Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring

Author(s):  
D. C. Knezevici ◽  
S. A. Sjolander ◽  
T. J. Praisner ◽  
E. Allen-Bradley ◽  
E. A. Grover

This paper is the second in a series from the same authors studying the mitigation of endwall losses using the low-speed linear cascade test facility at Carleton University. The previous paper documented the baseline test case for the study. The current work investigates the secondary flow in a cascade of more highly-loaded low-pressure turbine airfoils with and without the implementation of endwall profiling. This study is novel in two regards. First, the contouring is applied to low-pressure turbine airfoils, whereas studies conducted by other researchers have focused their endwall profiling efforts on the high-pressure turbine. Second, while previous researchers have optimized contouring designs for a given airfoil, the current work demonstrates the potential to open the design space by employing high-lift airfoils in conjunction with endwall contouring. Seven-hole pneumatic probe measurements taken within the blade passage and downstream of the trailing edge track the progression of the secondary flow and losses generated. The contouring divides the vorticity associated with the passage vortex into two weaker vortices, and reduces the secondary kinetic energy. Overall the secondary losses are reduced and the loss reduction is discussed with regards to changes in the flow physics. A detailed breakdown of the mixing losses further demonstrates the benefits of endwall contouring.

Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Francesco Bertini

Low pressure turbine airfoils of the present generation usually operate at subsonic conditions, with exit Mach numbers of about 0.6. To reduce the costs of experimental programs it can be convenient to carry out measurements in low speed tunnels in order to determine the cascades performance. Generally speaking, low speed tests are usually carried out on airfoils with modified shape, in order to compensate for the effects of compressibility. A scaling procedure for high-lift, low pressure turbine airfoils to be studied in low speed conditions is presented and discussed. The proposed procedure is based on the matching of a prescribed blade load distribution between the low speed airfoil and the actual one. Such a requirement is fulfilled via an Artificial Neural Network (ANN) methodology and a detailed parameterization of the airfoil. A RANS solver is used to guide the redesign process. The comparison between high and low speed profiles is carried out, over a wide range of Reynolds numbers, by using a novel three-equation, transition-sensitive, turbulence model. Such a model is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) with the Wilcox k–ω model and it has proven to be effective for transitional, separated-flow configurations of high-lift cascade flows.


Author(s):  
Kevin Keadle ◽  
Mark McQuilling

High lift low pressure turbine airfoils have complex flow features that can require advanced modeling capabilities for accurate flow predictions. These features include separated flows and the transition from laminar to turbulent boundary layers. Recent applications of computational fluid dynamics based on the Reynolds-averaged Navier-Stokes formulation have included modeling for attached and separated flow transition mechanisms in the form of empirical correlations and two- or three-equation eddy viscosity models. This study uses the three-equation model of Walters and Cokljat [1] to simulate the flow around the Pack B and L2F low pressure turbine airfoils in a two-dimensional cascade arrangement at a Reynolds number of 25,000. This model includes a third equation for the development of pre-transitional laminar kinetic energy (LKE), and is an updated version of the Walters and Leylek [2] model. The aft-loaded Pack B has a nominal Zweifel loading coefficient of 1.13, and the front-loaded L2F has a nominal loading coefficient of 1.59. Results show the updated LKE model improves predicted accuracy of pressure coefficient and velocity profiles over its previous version as well as two-equation RANS models developed for separated and transitional flows. Transition onset behavior also compares favorably with experiment. However, the current model is not found suitable for wake total pressure loss predictions in two-dimensional simulations at extremely low Reynolds numbers due to the predicted coherency of suction side vortices generated in the separated shear layers which cause a local gain in wake total pressure.


Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson ◽  
Lennart Lo¨fdahl

In this paper 3D numerical simulations of turbulent incompressible flows are validated against experimental data from the linear low pressure turbine/outlet guide vane (LPT/OGV) cascade at Chalmers in Sweden. The validation focuses on the secondary flow-fields and loss developments downstream of a highly loaded OGV. The numerical simulations are performed for the same inlet conditions as in the test-facility with engine-like properties in terms of Reynolds number, boundary-layer thickness and inlet flow angles with the goal to validate how accurately and reliably the secondary flow fields and losses for both on- and off-design conditions can be predicted for OGV’s. Results from three different turbulence models as implemented in FLUENT, k-ε Realizable, kω-SST and the RSM are validated against detailed measurements. From these results it can be concluded that the RSM model predicts both the secondary flow field and the losses most accurately.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
John P. Clark ◽  
Rolf Sondergaard

This paper presents the reasoning for and the design process of contouring a high lift front-loaded low pressure turbine (LPT) airfoil near the endwall to reduce the endwall loss. The test airfoil, L2F, was designed to the approximate gas angles with 38% larger pitchwise spacing than the widely studied Pack B airfoil. Being more front-loaded with a higher stagger angle, L2F is shown to produce more endwall losses than Pack B. It is suggested that the high endwall loss of L2F is due to the high stagger angle, not front-loading, as usually suggested in the literature. A procedure is presented to approximate the front-loading and stall resistance of L2F and obtain a low stagger version of that airfoil, designated as L2F-LS. A contoured airfoil is then designed by transitioning L2F into L2F-LS at the endwall to obtain a benefit from the reduced stagger angle at the endwall. Due to the contouring process generating a fillet, the contoured airfoil is referred to as L2F-EF (“endwall fillet”). Predictions in this paper suggest endwall loss reductions between 17% and 24% at Re = 100,000. Linear cascade experiments in Part II of this paper indicate that L2F-EF reduces endwall losses more than 20% compared to L2F. The overall conclusion is that the stagger angle has a significant effect on endwall loss and should be considered for designing high lift LPT airfoils at the endwall.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
T. J. Praisner ◽  
E. Allen-Bradley ◽  
E. A. Grover ◽  
D. C. Knezevici ◽  
S. A. Sjolander

Here, we report on the application of nonaxisymmetric endwall contouring to mitigate the endwall losses of one conventional and two high-lift low-pressure turbine airfoil designs. The design methodology presented combines a gradient-based optimization algorithm with a three-dimensional computational fluid dynamics (CFD) flow solver to systematically vary a free-form parameterization of the endwall. The ability of the CFD solver employed in this work to predict endwall loss modifications resulting from nonaxisymmetric contouring is demonstrated with previously published data. Based on the validated trend accuracy of the solver for predicting the effects of endwall contouring, the magnitude of predicted viscous losses forms the objective function for the endwall design methodology. This system has subsequently been employed to optimize contours for the conventional-lift Pack B and high-lift Pack D-F and Pack D-A low-pressure turbine airfoil designs. Comparisons between the predicted and measured loss benefits associated with the contouring for Pack D-F design are shown to be in reasonable agreement. Additionally, the predictions and data demonstrate that the Pack D-F endwall contour is effective at reducing losses primarily associated with the passage vortex. However, some deficiencies in predictive capabilities demonstrated here highlight the need for a better understanding of the physics of endwall loss-generation and improved predictive capabilities.


Sign in / Sign up

Export Citation Format

Share Document