A Parametric Study on the Effect of Sister Hole Location on Active Film Cooling Flow Control

Author(s):  
Marc J. Ely ◽  
B. A. Jubran

This paper presents an investigation on the effect of sister holes on film cooling. The proposed technique surrounds a primary injection hole by two or four smaller sister holes to actively maintain flow adhesion along the surface of the blade. A numerical evaluation using the realizable k-ε turbulence model led to the determination that the use of sister holes significantly improves adiabatic effectiveness by countering the primary vortical flow structure. Research was performed to determine the optimal hole configuration, arriving at the conclusion that placing sister holes slightly downstream of the primary injection hole improves the near-hole effectiveness, while placing sister holes slightly upstream of the primary hole improves downstream effectiveness. On the whole, the sister hole approach to film cooling was found to offer viable improvements over standard cooling regimes.

Author(s):  
Marc J. Ely ◽  
B. A. Jubran

This paper reports a computational analysis on the effect of sister hole control on film cooling from short holes. The proposed method includes surrounding a primary injection hole by two or four smaller sister holes to actively maintain flow adhesion along the surface of the blade. A numerical study using the realizable k-ε turbulence model led to the determination that the use of sister holes significantly improves adiabatic effectiveness by countering the primary vortical flow structure. Research was carried out to determine the optimum hole configuration, arriving at the conclusion that placing sister holes slightly downstream of the primary injection hole improves the near-hole effectiveness, while placing sister holes slightly upstream of the primary hole improves downstream effectiveness. Similar results were found in evaluating both long and short hole geometries with a significantly less coherent flow field arising from the short hole. However, on the whole, the sister hole approach to film cooling was found to offer viable improvements over standard cooling regimes.


2021 ◽  
Author(s):  
Marc J. Ely

The research contained herein studied the effect of sister holes on film cooling. This novel technique surrounds a primary injection hole by two or four smaller sister holes to actively maintain flow adhesion along the surface of the blade. A numerical evaluation using the realizable κ-ε turbulence model led to the determination that the use of sister holes significantly improves adiabatic effectiveness by countering the primary vertical flow structure. Research was performed to determine the optimal hole configuration, arriving at the conclusion that placing sister holes slightly downstream of the primary injection hole improves the near-hole effectiveness, while placing sister holes slightly upstream of the primary hole improves downstream effectiveness. Similar results were found in evaluating both long and short hole geometries with a significantly less coherent flow field arising form the short hole study. However, on the whole, the sister hole approach to film cooling was found to offer viable improvements over standard cooling regimes.


2021 ◽  
Author(s):  
Marc J. Ely

The research contained herein studied the effect of sister holes on film cooling. This novel technique surrounds a primary injection hole by two or four smaller sister holes to actively maintain flow adhesion along the surface of the blade. A numerical evaluation using the realizable κ-ε turbulence model led to the determination that the use of sister holes significantly improves adiabatic effectiveness by countering the primary vertical flow structure. Research was performed to determine the optimal hole configuration, arriving at the conclusion that placing sister holes slightly downstream of the primary injection hole improves the near-hole effectiveness, while placing sister holes slightly upstream of the primary hole improves downstream effectiveness. Similar results were found in evaluating both long and short hole geometries with a significantly less coherent flow field arising form the short hole study. However, on the whole, the sister hole approach to film cooling was found to offer viable improvements over standard cooling regimes.


Author(s):  
Todd A. Oliver ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Robert D. Moser ◽  
Gregory Laskowski

Results of a recent joint experimental and computational investigation of the flow through a plenum-fed 7-7-7 shaped film cooling hole are presented. In particular, we compare the measured adiabatic effectiveness and mean temperature against implicit large eddy simulation (iLES) for blowing ratio approximately 2, density ratio 1.6, and Reynolds number 6000. The results overall show reasonable agreement between the iLES and the experimental results for the adiabatic effectiveness and gross features of the mean temperature field. Notable discrepancies include the centerline adiabatic effectiveness near the hole, where the iLES under-predicts the measurements by Δη ≈ 0.05, and the near-wall temperature, where the simulation results show features not present in the measurements. After showing this comparison, the iLES results are used to examine features that were not measured in the experiments, including the in-hole flow and the dominant fluxes in the mean internal energy equation downstream of the hole. Key findings include that the flow near the entrance to the hole is highly turbulent and that there is a large region of backflow near the exit of the hole. Further, the well-known counter-rotating vortex pair downstream of the hole is observed. Finally, the typical gradient diffusion hypothesis for the Reynolds heat flux is evaluated and found to be incorrect.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

Experimental hot-wire anemometry and thermocouple measurements are taken to document the sensitivity which film cooling performance has to the hole length and the geometry of the plenum which supplies cooling flow to the holes. This sensitivity is described in terms of the effects these geometric features have on hole-exit velocity and turbulence intensity distributions and on adiabatic effectiveness values on the surface downstream. These measurements were taken under high freestream turbulence intensity (12%) conditions, representative of operating gas turbine engines. Coolant is supplied to the film cooling holes by means of (1) an unrestricted plenum, (2) a plenum which restricts the flow approaching the holes, forcing it to flow co-current with the freestream, and (3) a plenum which forces the flow to approach the holes counter-current with the freestream. Short-hole (L/D = 2.3) and long-hole (L/D = 7.0) comparisons are made. The geometry has a single row of film cooling holes with 35°-inclined streamwise injection. The film cooling flow is supplied at the same temperature as that of the freestream for hole-exit measurements and 10°C above the freestream temperature for adiabatic effectiveness measurements, yielding density ratios in the range 0.96–1.0. Two coolant-to-freestream velocity ratios, 0.5 and 1.0, are investigated. The results document the effects of (1) supply plenum geometry, (2) velocity ratio, and (3) hole L/D.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Tobias Wüllner ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result in increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. Today it is common knowledge that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also called kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-Counter-Rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRVs. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The NEKOMIMI configuration and two conventional cooling hole configurations (cylindrical and shaped holes) has been investigated numerically under adiabatic and conjugate heat transfer conditions. The influence of the conjugate heat transfer on the secondary flow structure has been analysed. In conjugate heat transfer calculations, it cannot directly derived from the surface temperature distribution if the reached cooling effectiveness values are due to the improved hole configuration with improved secondary flow structure or due to the heat conduction in the material. Therefore, a methodology has been developed, to distinguish between cooling effectiveness due to heat conduction in the material and film cooling flow over the surface. The numerical results shows that for the NEKOMIMI configuration, 77% of the reached overall cooling effectiveness is due to film cooling with improved flow structure in the secondary flow (ACRV) and 23% due to heat conduction in the material. For the cylindrical hole configuration, 10% of the reached overall cooling effectiveness is due to the film cooling flow structure and 90% due to heat conduction in the material.


Author(s):  
Katharine L. Harrison ◽  
David G. Bogard

Recent studies have shown that film cooling adiabatic effectiveness can be significantly improved when holes are embedded in shallow, transverse trenches. In this study computational simulations were made using the commercial CFD code FLUENT to determine if the dramatic improvement in film cooling performance was predictable. Simulations were made of a baseline cylindrical hole configuration, and narrow and wide trench configurations. Simulations correctly predicted that the narrow trench outperformed the baseline row of cylindrical holes and the wide trench at all blowing ratios. Furthermore, the simulations showed that enhanced performance with the trench could be attributed to decreased separation of the coolant jets. The success of these predictions show that computational simulations can be used as a tool for studying and identifying promising film cooling configurations.


Author(s):  
S.-M. Kim ◽  
Youn J. Kim

Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effects of injection hole shapes and injection angle on the film cooling of turbine blade, four models having cylindrical and laterally-diffused holes were used. Three-dimensional Navier-Stokes code with k – ε model was used to compute the film cooling coefficient on the turbine blade. A multi-block grid system was generated that was nearly orthogonal to the various surfaces. Mainstream Reynolds number based on the cylinder diameter was 7.1 × 104. The turbulence intensity kept at 5.0% for all inlets. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical body surface is visualized by infrared thermography (IRT) and compared with computational results. Results show that the effects of injection hole shape and injection angle increase as the blowing ratio increases. As lateral injection angle increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure distribution around the cylinder surface.


Author(s):  
Andreas Lerch ◽  
Heinz-Peter Schiffer ◽  
Daniela Klaubert

The internal heat transfer of turbine blades can be augmented using cyclone cooling, but the consequential impact on the external film cooling may be significant. To determine these effects, the distribution of adiabatic film cooling effectiveness was measured on the surface of a symmetrical blade model containing a cylindrical leading-edge channel. This channel feeds one row, respectively two opposite rows, of eight cooling holes each. Inside this channel two different types and directions of swirl are generated. The resulting adiabatic effectiveness distributions, which are measured using the calibrated ammonia diazo technique, are compared to those measured with a channel flow without swirl (datum configuration). The operating points are defined by blowing ratio (0.6–1.0) and film cooling discharge coefficient (20%–50%). A high full-range resolution over the adiabatic effectiveness is achieved using a weighting average method with multiple experiments per operating point. The lateral-averaged adiabatic effectiveness is presented up to 30 diameters downstream of the cooling holes. These effectiveness values show a high dependency on the configurations and reach values of about 0.3 to 2 times the reference configuration values. This is due to the strong variation of the flow structure inside the cooling holes. PIV-measurements and basic numerical simulations of the channel flow structure and dynamic pressure measurements at the cooling hole exits are carried out to support the results of film cooling effectiveness.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Jörg Ziefle ◽  
Leonhard Kleiser

Numerical simulation results using large-eddy simulation of a flow configuration relevant to the film cooling of turbine blades are presented. The flow configuration and the simulation parameters are chosen according to an experiment from literature, in which a hot turbulent crossflow over a flat plate is cooled by fluid issuing from a large isobaric plenum through a short inclined circular nozzle. Special attention is paid to the flow structure within the jet nozzle and the mixing region, as well as to the effect of the crossflow fluctuations thereon. To this end, the numerical results with the turbulent crossflow are compared to our previous data obtained with a steady mean-turbulent inflow profile. While the flow inside the nozzle is very similar for the two cases, large differences occur in the mixing region, where a much enhanced spreading of the coolant is observed with the turbulent crossflow. Consequently, the good agreement of the film-cooling efficiencies with the experimental data for the turbulent-crossflow case is contrasted by large deviations with the stationary inflow due to the lack of crossflow fluctuations.


Sign in / Sign up

Export Citation Format

Share Document