Effect of Various Injection Hole Shapes on Film Cooling of Turbine Blade

Author(s):  
S.-M. Kim ◽  
Youn J. Kim

Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effects of injection hole shapes and injection angle on the film cooling of turbine blade, four models having cylindrical and laterally-diffused holes were used. Three-dimensional Navier-Stokes code with k – ε model was used to compute the film cooling coefficient on the turbine blade. A multi-block grid system was generated that was nearly orthogonal to the various surfaces. Mainstream Reynolds number based on the cylinder diameter was 7.1 × 104. The turbulence intensity kept at 5.0% for all inlets. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical body surface is visualized by infrared thermography (IRT) and compared with computational results. Results show that the effects of injection hole shape and injection angle increase as the blowing ratio increases. As lateral injection angle increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure distribution around the cylinder surface.

Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Jun Li ◽  
Feng Zhang

The effect of curvature on the film cooling characteristics of Double-Jet Film Cooling (DJFC) was numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS). The low-Reynolds number shear stress transport (SST) model was employed as the turbulence closure model. Six different curved surfaces and a flat surface were tested numerically. The blowing ratios were from 0.66 to 1.99, and the compound injection angle with respect to the cooled surface was 30 degree. The blowing ratios and the curvature of cooled surface have crucial effects on the film cooling effectiveness. The numerical results show that there are two peek value of the averaged film cooling effectiveness along the mainstream direction. The results also indicate that the film cooling effectiveness of a specified curved surface depends on the reasonable selection of the slope of curved surface and blowing ratios.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical investigation of the film cooling performance from novel sister shaped single-holes (SSSH) is presented in this paper and the obtained results are compared with a single cylindrical hole, a forward diffused shaped hole, as well as discrete sister holes. Three types of the novel sister shaped single-hole schemes namely downstream, upstream and up/downstream SSSH, are designed based on merging the discrete sister holes to the primary hole in order to reduce the jet lift-off effect and increase the lateral spreading of the coolant on the blade surface as well as a reduction in the amount of coolant in comparison with discrete sister holes. The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The upstream SSSH demonstrates similar film cooling performance to that of the forward diffused shaped hole for the low blowing ratio of 0.5. While it performs more efficiently at M = 1, where the centerline and laterally averaged effectiveness results improved by 70% and 17%, respectively. On the other hand, the downstream and up/downstream SSSH schemes show a considerable improvement in film cooling performance in terms of obtaining higher film cooling effectiveness and less jet lift-off effect as compared with the single cylindrical and forward diffused shaped holes for both blowing ratios of M = 0.5 and 1. For example, the laterally averaged effectiveness for the downstream SSSH configuration shows an improvement of approximately 57% and 110% on average as compared to the forward diffused shaped hole for blowing ratios of 0.5 and 1, respectively.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical study on the effects of sister holes locations on film cooling performance is presented. This includes the change of the location of the individual discrete sister holes in the streamwise and spanwise directions, where each one of these directions includes 9 different locations, The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The variation of the sister holes in the streamwise direction provides similar film cooling performance as the base case for both blowing ratios of 0.5 and 1. On the other hand, the spanwise variation of the sister holes’ location has a more prominent effect on the effectiveness. In some cases, as a result of the anti-vortices generated from the sister holes and the repositioning of the sister holes in the spanwise direction, the jet lift-off effect notably decreases and more volume of coolant is distributed in the spanwise direction.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


1986 ◽  
Vol 108 (1) ◽  
pp. 124-130 ◽  
Author(s):  
A. O. Demuren ◽  
W. Rodi ◽  
B. Scho¨nung

The present paper describes three-dimensional calculations of film cooling by injection from a single row of holes. A systematic study of the influence of different parameters on the cooling effectiveness has been carried out. Twenty-seven test cases have been calculated, varying the injection angle (α = 10/45/90 deg), the relative spacing (s/D = 1.5/3/5) and the blowing rate (M = 0.5/1/2) for the same mainstream conditions. The governing three-dimensional equations are solved by a finite volume method. The turbulent stresses and heat fluxes are obtained from a k–ε model modified to account for nonisotropic eddy viscosities and diffusivities. Examples of predicted velocity and temperature distributions are presented and compared with available experimental data. For all the test cases, the laterally averaged cooling effectiveness is given. On the whole, the agreement with experiments is fairly good, even though there are discrepancies about details in some of the cases. The influence of the individual parameters on the film cooling effectiveness is predicted correctly in all cases. This influence is discussed in some detail and the parameter combination with the best overall cooling performance is identified.


Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
Atul Kohli ◽  
Christopher Lehane

Three-dimensional contouring of the compressor and turbine endwalls in a gas turbine engine has been shown to be an effective method of reducing aerodynamic losses by mitigating the strength of the complex vortical structures generated at the endwall. Reductions in endwall heat transfer in the turbine have been also previously measured and reported in literature. In this study, computational fluid dynamics simulations of a turbine blade with and without nonaxisymmetric endwall contouring were compared to experimental measurements of the exit flowfield, endwall heat transfer, and endwall film-cooling. Secondary kinetic energy at the cascade exit was closely predicted with a simulation using the SST k-ω turbulence model. Endwall heat transfer was overpredicted in the passage for both the SST k-ω and realizable k-ε turbulence models, but heat transfer augmentation for a nonaxisymmetric contour relative to a flat endwall showed fair agreement to the experiment. Measured and predicted film-cooling results indicated that the nonaxisymmetric contouring limits the spread of film-cooling flow over the endwall depending on the interaction of the film with the contour geometry.


1999 ◽  
Vol 121 (4) ◽  
pp. 792-803 ◽  
Author(s):  
M. K. Berthe ◽  
S. V. Patankar

Computations have been conducted on curved, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection hole, and supply plenum regions. Both convex and concave film cooling geometries were studied. The effects of several film cooling parameters have been investigated, including the effects of blowing ratio, injection angle, hole length, hole spacing, and hole staggering. The blowing ratio was varied from 0.5 to 1.5, the injection angle from 35 to 65 deg, the hole length from 1.75D to 6.0D, and the hole spacing from 2D to 3D. The staggered-hole arrangement considered included two rows. The computations were performed by solving the fully elliptic, three-dimensional Navier–Stokes equations over a body-fitted grid. Turbulence closure was achieved using a modified k–ε model in which algebraic relations were used for the turbulent viscosity and the turbulent Prandtl number. The results presented and discussed include plots of adiabatic effectiveness as well as plots of velocity contours and velocity vectors in cross-stream planes. The present study reveals that the blowing ratio, hole spacing, and hole staggering are among the most significant film cooling parameters. Furthermore: (1) The optimum blowing ratios for curved surfaces are higher than those for flat surfaces, (2) a reduction of hole spacing from 3D to 2D resulted in a very significant increase in adiabatic effectiveness, especially on the concave surface, (3) the increase in cooling effectiveness with decreasing hole spacing was found to be due to not only the increased coolant mass per unit area, but also the smaller jet penetration and the weaker counterrotating vortices, (4) for all practical purposes, the hole length was found to be a much less significant film cooling parameter.


2014 ◽  
Vol 695 ◽  
pp. 389-392
Author(s):  
Shahin Salimi ◽  
Nor Azwadi Che Sidik ◽  
Leila Jahanshaloo ◽  
Kianpour Ehsan

A numerical simulation has been performed for the investigation of flow and heat transfer characteristics of a film cooling injected through a hole with cylindrical and compound angle orientation. This paper presents the effects of coolant injector configuration of cylindrical and compound cooling holes with alignment angle of 30 degree at blowing ratio, BR = 3.18 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package ANSYS FLUENT 14.0. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages The results indicate that using compound angle cooling holes injection, give much better protection than that obtained when simple angle cooling holes were used.


Author(s):  
Gazi I. Mahmood ◽  
Ross Gustafson ◽  
Sumanta Acharya

The measured flow field and temperature field near a three-dimensional asymmetric contour endwall employed in a linear blade cascade are presented with and without film-cooling flow on the endwall. Flow field temperature and Nusselt number distributions along the asymmetric endwall with wall heating and no film-cooling flow are also reported to show local high heat transfer region on the endwall and justify the locations of the coolant holes. Adiabatic film-cooling effectiveness along the endwall is then measured to indicate the local effects of the coolant jets. The near endwall flow field and temperature field provide the coolant flow behavior and the interaction of coolant jets with the boundary layer flow. Thus, the local film-cooling effectiveness can be explained with the coolant jet trajectories. The measurements are obtained at the Reynolds number of 2.30×105 based on blade actual chord and inlet velocity, coolant-to-free stream temperature ratio of 0.93, and coolant-to-free stream density ratio of 1.06. The cascade employs the hub side blade section and passage geometry of the first stage rotor of GE-E3 turbine engine. The contour endwall profile is employed on the bottom endwall only in the cascade. The blowing ratio of the film-cooling flow varies from 1.0 to 2.4 from 71 discrete cylindrical holes located in the contour endwall. The three-dimensional profile of the endwall varies in height in both the pitchwise and axial directions. The flow field is quantified with the streamwise vorticity and turbulent intensity, pitchwise static pressure difference, flow yaw angle, and pitchwise velocity. Both the flow field and temperature data indicate that the coolant jets cover more distance in the pitchwise and axial direction in the passage as the blowing ratio increases. Thus, the local and average film-cooling effectiveness increase with the blowing ratio.


Sign in / Sign up

Export Citation Format

Share Document