Test Plan and Preliminary Test Results of a Bench Scale Closed Cycle Gas Turbine With Super-Critical CO2 as Working Fluid

Author(s):  
Hiroshi Hasuike ◽  
Takashi Yamamoto ◽  
Toshihiko Fukushima ◽  
Toshinori Watanabe ◽  
Motoaki Utamura ◽  
...  

Development of a closed cycle gas turbine using supercritical carbon dioxide as a working fluid is underway to generate power from industrial waste heat sources of a low or intermediate temperature range. Its demonstration test plan using a reduced scale turbomachine is described herein. Principal specifications include the following: net power output of 10 kWe and recirculation CO2 with flow rate of 1.2 kg/s under given turbine inlet conditions of 550 K and 12 MPa. The optimized ranges of compressor inlet temperatures and pressures are investigated in this study. Given these inlet conditions, primary and auxiliary component development is done. Coupled with cycle analysis, the design rotational speed of the co-axially aligned turbomachine was determined as 100,000 rpm. Aerodynamic CFD analyses were conducted for the centrifugal compressor considering real gas properties. Preliminary test results show indirect evidence of compressor work reduction inherent to the supercritical CO2 gas turbine concept.

Author(s):  
Colin F. McDonald ◽  
Kosla Vepa

This paper describes the turbomachinery design considerations for a supercritical Rankine cycle waste heat power conversion system for use with the large helium closed-cycle gas turbine nuclear power plant under development by General Atomic Company. The conceptual designs of the ammonia turbine and pump are presented. The high density working fluid in the ammonia turbine results in small blade heights and high hub-to-tip ratios due to a combination of the properties of ammonia and the high degree of pressurization, particularly at the turbine exit. With the molecular weight of the ammonia working fluid being very similar to steam, the double-flow, multistage axial ammonia turbine bears a strong resemblance to modern steam turbines. Conceptual design work has been done in sufficient detail to support component cost estimates for the balance of plant economic studies. While an extensive design program is needed for the ammonia turbine, existing technology from the power generating and chemical process industries is generally applicable; and, with specialized design attention, the goal of high turbine efficiency should be realizable. The design studies have been specifically directed toward a nuclear closed-cycle helium gas turbine plant (GT-HTGR); however, it is postulated that the turbine design considerations presented could be applicable to other low temperature power conversion systems such as geothermal or industrial waste heat applications.


2010 ◽  
Vol 2010.15 (0) ◽  
pp. 197-198
Author(s):  
Motoaki UTAMURA ◽  
Masanori ARITOMI ◽  
Takashi YAMAMOTO ◽  
Hiroshi HASUIKE

Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

One major challenge to the accurate development of performance simulation tool for component-based nuclear power plant engine models is the difficulty in accessing component performance maps; hence, researchers or engineers often rely on estimation approach using various scaling techniques. This paper describes a multi-fluid scaling approach used to determine the component characteristics of a closed-cycle gas turbine plant from an existing component map with their design data, which can be applied for different working fluids as may be required in closed-cycle gas turbine operations to adapt data from one component map into a new component map. Each component operation is defined by an appropriate change of state equations which describes its thermodynamic behavior, thus, a consideration of the working fluid properties is of high relevance to the scaling approach. The multi-fluid scaling technique described in this paper was used to develop a computer simulation tool called GT-ACYSS, which can be valuable for analyzing the performance of closed-cycle gas turbine operations with different working fluids. This approach makes it easy to theoretically scale existing map using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with available data.


Author(s):  
James F. Walton ◽  
Andrew Hunsberger ◽  
Hooshang Heshmat

In this paper the authors will present the design and preliminary test results for a distributed electric generating system that uses renewable energy source for economical load-following and peak-shaving capability in an oil-free, high-speed micro-turboalternator system using compliant foil bearings and a permanent magnet alternator. Test results achieved with the prototype system operating to full speed and under power generating mode will be presented. A comparison between predicted and measured electrical output will also be presented up to a power generating level of 25 kWe at approximately 55,000 rpm. The excellent correlation between design and test provides the basis for scale up to larger power levels. Based upon the turboalternator test results a thermodynamic cycle analysis of a system using low grade waste heat water at approximately 100 C will be reviewed. The tradeoff study results for a series of environmentally friendly refrigerant working fluids will also be presented including sensitivity to vaporization and condensing temperatures. Based on the cycle and pinch point analyses predicted maximum output power was determined. Finally a preliminary turbine design for the selected R134a working fluid was completed. The results of this study show that a net output power level of greater than 40 kW is possible for approximately 240 l/m flow of water at 100C is possible.


Author(s):  
Ali Afrazeh ◽  
Hiwa Khaledi ◽  
Mohammad Bagher Ghofrani

A gas turbine in combination with a nuclear heat source has been subject of study for some years. This paper describes the advantages of a gas turbine combined with an inherently safe and well-proven nuclear heat source. The design of the power conversion system is based on a regenerative, non-intercooled, closed, direct Brayton cycle with high temperature gas-cooled reactor (HTGR), as heat source and helium gas as the working fluid. The plant produces electricity and hot water for district heating (DH). Variation of specific heat, enthalpy and entropy of working fluid with pressure and temperature are included in this model. Advanced blade cooling technology is used in order to allow for a high turbine inlet temperature. The paper starts with an overview of the main characteristics of the nuclear heat source, Then presents a study to determine the specifications of a closed-cycle gas turbine for the HTGR installation. Attention is given to the way such a closed-cycle gas turbine can be modeled. Subsequently the sensitivity of the efficiency to several design choices is investigated. This model is developed in Fortran.


Author(s):  
James K. La Fleur

In May of 1960 La Fleur Enterprises, later to become The La Fleur Corporation, undertook the design of a closed-cycle gas turbine utilizing helium as a working fluid. The useful output of this machine was to be in the form of a stream of helium bled from the last stage of the compressor. This stream was to be used in a low-temperature refrigeration cycle (not described in this paper) and would be returned to the compressor inlet at approximately ambient temperature and at compressor-inlet pressure. The design of this machine was completed by the end of 1960 and construction was initiated immediately. The unit was completed and initial tests were made in the Spring of 1962. This paper covers the design philosophy as it affected the conceptual and preliminary design phases of the project and describes briefly the design of the various components. Photographs of these components and a flow schematic are included.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


Author(s):  
L. D. Stoughton ◽  
T. V. Sheehan

A nuclear power plant is proposed which combines the advantages of a liquid metal fueled reactor with those inherent in a closed cycle gas turbine. The reactor fuel is a solution of uranium in molten bismuth which allows for unlimited burn-up with continuous fuel make-up and processing. The fuel can either be contained in a graphite core structure or circulated through an external heat exchanger. The cycle working fluid is an inert gas which is heated by the reactor fuel before entering the turbine. A 15 MW closed cycle gas turbine system is shown to illustrate the application of this reactor.


1970 ◽  
Author(s):  
Stephen Luchter

Gas-turbine waste heat appears to be a valuable source of energy, yet the number of installations in which this energy is utilized is minimal. The reasons for this are reviewed and a typical nonafterburning cycle is examined for both steam and an “organic” working fluid. The power level range over which each is attractive is obtained, and the costs of each are compared on a relative basis.


Sign in / Sign up

Export Citation Format

Share Document