low temperature refrigeration
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2 (2) ◽  
pp. 87-98
Author(s):  
Abhishek Verma ◽  
S. C. Kaushik ◽  
S. K. Tyagi

Transcritical CO2 refrigeration system is coupled with the single effect vapour absorption with LiBr-water as a working pair having an objective to enhance the performance of low temperature transcritical refrigeration system while using natural working pair and to reduce the electricity consumption to produce low temperature refrigeration. The high grade waste heat rejected in the gas cooler of tc-CO2 compression refrigeration system (TCRS) is utilized to run the single effect vapour absorption system (SEVAR) to enhance the energy efficiency of the system. The gas cooler in the transcritical CO2 system is having heat energy at high temperature and pressure, which is utilized to run the vapour absorption system, while the other refrigerant heat exchanger provides subcooling to further enhance the performance. The combined cycle can provide refrigeration temperature at different levels, to use it for different applications. Energetic and exergetic analysis have been done to analyze the combined system to compute the performance parameters and the irreversibilities occurring in different components to further increase the performance. The combined system is optimized for various heat rejection and refrigeration temperatures. The COP of the combined system has been enhanced by to 24.88% while the enhancement in exergetic efficiency (ηex) is observed as 10.14% respectively over tradition transcritical CO2 compression refrigeration system, with -10°C as an evaporation (TCRS cooling) temperature and exit temperature of gas cooler T4 being 40°C. Doi: 10.28991/HIJ-2021-02-02-02 Full Text: PDF


2021 ◽  
Vol 188 ◽  
pp. 116613
Author(s):  
Bernardo Peris Pérez ◽  
José Antonio Expósito Carrillo ◽  
Francisco José Sánchez de La Flor ◽  
José Manuel Salmerón Lissén ◽  
Andrés Morillo Navarro

Author(s):  
A. S. Khrekin ◽  
◽  
I. V. Baranov ◽  
A. A. Nikitin ◽  
◽  
...  

The paper analyzes and proves the feasibility of improving the energy performance of low-temperature refrigeration machines operating on R744 using cascade design with R134a, R1234yf and R717 as refrigerants based on data the scientific study of two-stage schemes analysis. At present, it is given the existing environmental prohibitions and the growing interest in the creation of low-temperature refrigeration machines operating on carbon dioxide (R744) in two-stage and cascade schemes, the presented research supplements the scientific literature on justifying the use of each of them.


2020 ◽  
Vol 6 (4) ◽  
pp. 59
Author(s):  
Katarína Karl’ová ◽  
Jozef Strečka ◽  
Jozef Haniš ◽  
Masayuki Hagiwara

Magnetic and magnetocaloric properties of a spin-1 Heisenberg diamond cluster with two different coupling constants are investigated with the help of an exact diagonalization based on the Kambe’s method, which employs a local conservation of composite spins formed by spin-1 entities located in opposite corners of a diamond spin cluster. It is shown that the spin-1 Heisenberg diamond cluster exhibits several intriguing quantum ground states, which are manifested in low-temperature magnetization curves as intermediate plateaus at 1/4, 1/2, and 3/4 of the saturation magnetization. In addition, the spin-1 Heisenberg diamond cluster may also exhibit an enhanced magnetocaloric effect, which may be relevant for a low-temperature refrigeration achieved through the adiabatic demagnetization. It is evidenced that the spin-1 Heisenberg diamond cluster with the antiferromagnetic coupling constants J1/kB = 41.4 K and J2/kB = 9.2 K satisfactorily reproduces a low-temperature magnetization curve recorded for the tetranuclear nickel complex [Ni4(μ-CO3)2(aetpy)8](ClO4)4 (aetpy = 2-aminoethyl-pyridine) including a size and position of intermediate plateaus detected at 1/2 and 3/4 of the saturation magnetization. A microscopic nature of fractional magnetization plateaus observed experimentally is clarified and interpreted in terms of valence-bond crystal with either a single or double valence bond. It is suggested that this frustrated magnetic molecule can provide a prospective cryogenic coolant with the maximal isothermal entropy change −ΔSM=10.6 J·K−1·kg−1 in a temperature range below 2.3 K.


2020 ◽  
Vol 28 (04) ◽  
pp. 2050029
Author(s):  
Donggyu Lee ◽  
Donghyun Kim ◽  
Chaedong Kang

The phenomenon of supercooling, which prevents freezing of water below the freezing point, is an obstacle to the production of inexpensive ice. In the case of ice heat storage systems using bio-preservation, low-temperature refrigeration of food and ice capsules in the HVAC industry, the supercooled water in capsules that indirectly come into contact with the outside is one of the problems that must be solved to maintain energy costs and the quality of food or organs. To improve this, experimental evaluation of additives that serve as crude nuclear agents is needed. However, research on this area needs to be supported because the types of additives are limited and their physical properties are unstable. In this paper, the effect of distilled water containing an additive of average diameter nanometer size on solution (frozen) supercooled below the freezing point was investigated. The supercooling time and supercooling level of each specimen were analyzed after addition of kaolin, strontium hydroxide, oxidizing mineral and nano-sized single-wall carbon nanotubes (SWCNT) as mineral fine particles in the distilled water. As a result, it has been confirmed that kaolin and SWCNT can be used as nuclear materials to release supercooling of water. In addition, when kaolin, a mineral fine particle, is used as a nuclear material, its size affects the performance of nuclearization. This confirmed the impact of nuclear material particle size and structure on overcooled emissions.


Sign in / Sign up

Export Citation Format

Share Document