Local Measurements of Disc Heat Transfer in Heated Rotating Cavities for Several Flow Regimes

Author(s):  
Andre´ Gu¨nther ◽  
Wieland Uffrecht ◽  
Stefan Odenbach

This paper discusses experimental results from a two cavity test rig representative for the internal air system of a high pressure compressor. Thermal steady state measurements of the time-averaged local heat fluxes on both sides of the mid disc are presented for three different flow regimes: pure axial throughflow of cooling air and axial throughflow of cooling air in two directions with a superposed radial inflow of hot air in one cavity. Mass flow ratios between 1/40 < mrad/max < 2/1 are measured. Tests were carried out for a wide range of non-dimensional parameters: Re φ up to 107, Rez up to 2 × 105 and Cw up to −2.5 × 104. In all cases the shroud is uniformly heated to approximately 100°C. The local axial heat fluxes are determined separately for both sides of the mid disc from measurements of the surface temperatures with open spot-welded thermocouples. The method of heat flux determination and an analysis approach calculating the uncertainties and the sensitivity are described and discussed. The local heat flux results of the different flow paths are compared and interpreted by assumed flow structures. The time-averaged heat flux results can adequately be interpreted by flow structures of two toroidal vortices for axial throughflow and a source-sink flow for the radial inflow. The measurements show that the axial heat flux can change the direction, i.e. areas exist where the disc is heated and not cooled by the flow. For axial throughflow a local minimum of heat flux exists on the impinged side in the range of x = 0.65 if the axial Reynolds number is low or the rotational Reynolds number is high. On the back side a heating area exists in all tests in the lower half of the disc (x < 0.6) due to recirculated air of higher temperature. This heating area corresponds to the range of the inner vortex and increases with higher axial and rotational Reynolds numbers.

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
André Günther ◽  
Wieland Uffrecht ◽  
Stefan Odenbach

This paper discusses experimental results from a two-cavity test rig representation of the internal air system of a high-pressure compressor. Thermal steady-state measurements of the time-averaged local heat fluxes on both sides of the middle disk are presented for three different flow regimes: pure axial throughflow of cooling air and axial throughflow of cooling air in two directions with a superposed radial inflow of hot air in one cavity. Mass flow ratios between 1/40 < mrad/max < 2/1 are measured. Tests were carried out for a wide range of non-dimensional parameters: Reφ up to 107, Rez up to 2 × 105, and Cw up to −2.5 × 104. In all cases, the shroud is uniformly heated to approximately 100 °C. The local axial heat fluxes are determined separately for both sides of the middle disk from measurements of the surface temperatures with open spot-welded thermo-couples. The method of heat flux determination and an analysis approach calculating the uncertainties and the sensitivity are described and discussed. The local heat flux results of the different flow paths are compared and interpreted by assumed flow structures. The time-averaged heat flux results can be adequately interpreted by flow structures of two toroidal vortices for axial throughflow and a source-sink flow for the radial inflow. The measurements show that the axial heat flux can change direction, i.e., areas exist where the disk is heated and not cooled by the flow. For axial throughflow, a local minimum of heat flux exists on the impinged side in the range of x = 0.65. On the back side, a heating area exists in all tests in the lower half of the disk (x < 0.6) due to recirculated air of higher temperature. This heating area corresponds to the range of the inner vortex and increases with higher axial and rotational Reynolds numbers.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Fabien Volle ◽  
Michel Gradeck ◽  
Denis Maillet ◽  
Arsène Kouachi ◽  
Michel Lebouché

A method using either a one-dimensional analytical or a two-dimensional numerical inverse technique is developed for measurement of local heat fluxes at the surface of a hot rotating cylinder submitted to the impingement of a subcooled water jet. The direct model calculates the temperature field inside the cylinder that is submitted to a given nonuniform and time dependent heat flux on its outer surface and to a uniform surface heat source on an inner radius. In order to validate the algorithms, simulated temperature measurements inside the cylinder are processed and used by the two inverse techniques to estimate the wall heat flux. As the problem is improperly posed, regularization methods have been introduced into the analytical and numerical inverse algorithms. The numerical results obtained using the analytical technique compare well with the results obtained using the numerical algorithm, showing a good stable estimation of the available test solutions. Furthermore, real experimental data are used for the estimation, and local boiling curves are plotted and discussed.


1972 ◽  
Vol 94 (1) ◽  
pp. 7-14 ◽  
Author(s):  
L. B. Newman ◽  
E. M. Sparrow ◽  
E. R. G. Eckert

Experiments involving both heat-transfer and turbulence-field measurements were performed to determine the influence of free-stream turbulence on the local heat transfer from a sphere situated in a forced-convection airflow. The research was facilitated by a miniature heat-flux sensor which could be positioned at any circumferential location on the equator of the sphere. Turbulence grids were employed to generate free-stream turbulence with intensities of up to 9.4 percent. The Reynolds-number range of the experiments was from 20,000 to 62,000. The results indicate that the local heat flux in the forward region of the sphere is uninfluenced by free-stream turbulence levels of up to about 5 percent. For higher turbulence levels, the heat-flux increases with the turbulence intensity, the greatest heat-flux augmentation found here being about 15 percent. Furthermore, at the higher turbulence intensities, there appears to be a departure from the half-power Reynolds-number dependence of the stagnation-point Nusselt number. Turbulent separation occurred at Reynolds numbers of 42,000 and 62,000 for a turbulence level of 9.4 percent, these values being well below the transition Reynolds number of 2 × 105 for a sphere situated in a low-turbulence flow.


2021 ◽  
Vol 39 (3) ◽  
pp. 817-824
Author(s):  
Ameer Abed Jaddoa

This paper analyzes the effect of fluid flow characteristics on the convection heat transfer for mini-helically coiled tubes (HCT) using supercritical carbon dioxide (CO2) as a natural refrigerant. Two experimental cases have studied in this work for mini-helically coiled tubes at different diameters with different coil pitches for analyzing the convection heat transfer with flow resistance. In the first case, the inner tube diameter, coil diameter and coil pitch were 5 mm, 200 mm and 10 mm respectively, while 10 mm, 100 mm and 5 mm were for the second case. Moreover, this work has also investigated the influence of frictional pressure drop, heat flux, friction factor and mass flux on dimensionless exergy destruction. The work environments were 300-500 K as an inlet temperatures range, 200-2000 Kg / (m2. s) as a mass heat fluxes range, 50,000-500,000 as a Reynolds number (Re) range and 50-200 Kw/m2 as an inner heat fluxes range. As a result, a large effect has been observed for dimensionless exergy destruction compared with the flow friction of CO2 which induced by heat transfer irreversibility. On the other point of view, a good sensitivity of optimal Re with the tube dimeter and mass flux also noticed compared with the heat flux. At a suitable range for Re, smallest and best exergy destruction also noticed for the tube diameters. A correlation has for the optimal Reynolds number as function of main dimensionless parameters related to wall heat flux, mass flux, fluid properties and geometric dimensions is proposed. Characteristics of the fluid flow had influenced significantly by mass and heat fluxes. In the future, the collected experimental data can be employed in order to design and improve the refrigeration conditioning performance for exchangers and other systems such as heat pumps.


Author(s):  
Sergey E. Yakush ◽  
Nazar T. Lubchenko ◽  
Pavel Kudinov

Coolability of an ex-vessel debris bed in severe accident conditions is considered from the risk perspective. The concept of “load versus capacity” is employed to quantify the probability of failure (local dryout). Possible choices of “load” and “capacity” in terms of heat fluxes, thermal power or melt mass are discussed. Results of Monte Carlo simulations of distribution functions for the local heat flux and the dryout heat flux at the debris bed top point (defined as the extensions of one-dimensional counterparts) are presented. A surrogate model for the dryout heat flux is developed by the generalization of two-dimensional simulation results. Dryout probabilities are obtained under the conservative assumptions (neglecting the coolability improvement due to side ingress of water into a non-flat debris bed), and from the surrogate model. Outlook is given for the prospective development of the risk-informed approach to debris bed coolability in the context of comprehensive severe accident risk analysis.


1985 ◽  
Vol 107 (2) ◽  
pp. 439-444 ◽  
Author(s):  
A. C. Alkidas ◽  
R. M. Cole

Transient surface heat flux measurements were performed at several locations on the cylinder head of a divided-chamber diesel engine. The local heat flux histories were found to be significantly different. These differences are attributed to the spatial nonuniformity of the fluid motion and combustion. Both local time-averaged and local peak heat fluxes decreased with decreasing speed and load. Retarding the combustion timing beyond TDC decreased the peak heat flux in the antechamber but increased the peak heat flux in the main chamber. This is attributed to the relative increase in the portion of fuel that burns in the main chamber with retarded combustion timing.


2020 ◽  
pp. 146808742091728
Author(s):  
Kazuhito Dejima ◽  
Osamu Nakabeppu

In this study, it was attempted to estimate the flow characteristics in the vicinity of an engine inner wall from the instantaneous local heat fluxes measured using a micro-electro-mechanical systems sensor. As the sensor has three resistance temperature detectors with a size of 315 µm fabricated on a circumference with a diameter of 900 µm in rotational symmetry, it can measure local heat flux on the equivalent scale of the turbulence of in-cylinder flow. The advective velocity and turbulent eddy scale were estimated from heat flux fluctuations using a cross-correlation analysis, and these were compared with results of particle image velocimetry performed under motored operation conditions. As a result, it was found that the micro-electro-mechanical systems sensor has the potential to detect the gas side information such as the wall parallel flow velocity. Although further verification of the physical meanings of the estimated characteristics is necessary, the micro-electro-mechanical systems sensor will become a powerful tool for engine diagnostics.


Author(s):  
David C. Deisenroth ◽  
Avram Bar-Cohen ◽  
Michael Ohadi

Two-phase cooling has become an increasingly attractive option for thermal management of high-heat flux electronics. Cooling channels embedded directly on the back of the heat source (chip) facilitate two-phase boiling/evaporation effectiveness, eliminating many thermal resistances generated by more traditional, remote chip-cooling approaches. Accordingly, manifold-microchannel flow paths in embedded cooling systems can allow very high heat fluxes with low junction temperatures. But, the effect of the feeding manifold design, channel geometry, and the associated shear, stagnation zones, and centripetal accelerations with varying heat flux and mass flux are not well understood. This study builds upon our previous work and elucidates effects of channel geometry, mass flux, and outlet quality on the boiling/evaporation flow regimes in a manifolded microgap channel.


1961 ◽  
Vol 83 (4) ◽  
pp. 415-422 ◽  
Author(s):  
E. M. Sparrow ◽  
A. L. Loeffler ◽  
H. A. Hubbard

Consideration is given to the fully developed heat-transfer characteristics for longitudinal laminar flow between cylinders arranged in an equilateral triangular array. The analysis is carried out for the condition of uniform heat transfer per unit length. Solutions are obtained for the temperature distribution, and from these, Nusselt numbers are derived for a wide range of spacing-to-diameter ratios. It is found that as the spacing ratio increases, so also does the wall-to-bulk temperature difference for a fixed heat transfer per unit length. Corresponding to a uniform surface temperature around the circumference of a cylinder, the circumferential variation of the local heat flux is computed. For spacing ratios of 1.5 ∼ 2.0 and greater, uniform peripheral wall temperature and uniform peripheral heat flux are simultaneously achieved. A simplified analysis which neglects circumferential variations is also carried out, and the results are compared with those from the more exact formulation.


Sign in / Sign up

Export Citation Format

Share Document