Wet Gas Impeller Test Facility

Author(s):  
Trond G. Gru¨ner ◽  
Lars E. Bakken

The development of wet gas compressors will enable increased oil and gas production rates and enhanced profitable operation by subsea well-stream boosting. A more fundamental knowledge of the impact of liquid is essential with regard to the understanding of thermodynamic and fluid dynamic compressor behavior. An open-loop impeller test facility was designed to investigate the wet gas performance, aerodynamic stability, and operation range. The facility was made adaptable for different impeller and diffuser geometries. In this paper, the wet gas test facility and experimental work concerning the impact of wet gas on a representative full-scale industrial impeller are presented. The centrifugal compressor performance was examined at high gas volume fractions and atmospheric inlet conditions. Air and water were used as experimental fluids. Dry and wet gas performance was experimentally verified and analyzed. The results were in accordance with previous test data and indicated a stringent influence of the liquid phase. Air/water tests at atmospheric conditions were capable of reproducing the general performance trend of hydrocarbon wet gas compressor tests at high pressure.

Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

Adopting the innovative technology found in a compressor able to compress a mixture of natural gas and condensate has great potential for meeting future challenges in subsea oil and gas production. Benefits include reduced size, complexity and cost, enhanced well output, longer producing life and increased profits, which in turn offer opportunities for exploiting smaller oil and gas discoveries or extending the commercial life of existing fields. Introducing liquid into a centrifugal compressor creates several thermodynamic and fluid-mechanical challenges. The paper reviews some of the drive mechanisms involved in wet gas compression and views them in the context of the test results presented. An inlet guide vane (IGV) assembly has been installed in a test facility for wet gas compressors and the effect of wet gas on IGV performance documented. The impact of changes in IGV performance on impeller and diffuser has also been documented. The results have been discussed and correction methods compared.


2018 ◽  
Author(s):  
Martin Bakken ◽  
Tor Bjørge ◽  
Lars E. Bakken

The continuous demand for oil and gas forces the petroleum industry to develop new and cost-effective technologies to increase recovery from new fields and enhance extraction from existing fields. Subsea wet gas compression stands out as a promising solution for increasing production capacity, utilizing remote regions and reducing costs. A prerequisite for successful oil and gas production utilizing subsea wet gas compressors is operability. This includes the system’s ability to cope with operational changes, without having to shut down. One of the fundamental operational changes is the liquid content in the inlet pipe, which may fluctuate considerably at certain time intervals. The current study investigates how changes in liquid content impacts compressor performance. An experimental test campaign has been performed at the Norwegian University of Science and Technology (NTNU). The test facility is an open loop configuration consisting of a single shrouded centrifugal impeller, a vaneless diffuser and a symmetrical circular volute. The main objectives were to document how the presence of liquid impacts the compressor characteristics and further, how the operating point moves within the characteristics when solely subjected to an increase of liquid content. The compressor was exposed to liquid contents ranging from gas mass fraction 1.0 to 0.60. The test reveals that the compressor pressure ratio at wet conditions is higher in comparison to dry conditions. Care should be taken when analysing stability and surge margins at variations in fluid liquid content. Further, the compressor behaves in a predictable manner, revealing several linear trends, when subjected to stepwise changes in liquid content from a fixed operating point.


Author(s):  
Kumarswamy Karpanan ◽  
Craig Hamilton-Smith

Subsea oil and gas production involves assemblies such as trees, manifolds, and pipelines that are installed on sea floor. Each of these components is exposed to severe working conditions throughout its operational life and is difficult and expensive to repair or retrieve installed. During installation and operation, a rig/platform and several supply vessels are stationed on the waterline directly above the well and installed equipment below. If any object is to be dropped overboard, it presents a hazard to the installed equipment. A subsea tree comprises of a number of critical components such as valves and hydraulic actuators, in addition to several electrical components such as the subsea control module and pressure/temperature gauges. Their ability to operate correctly is vital to the safe production of oil and gas. If an object were to impact and damage these components, resulting in their inability to operate as intended, the consequences could be severe. In this paper, a typical subsea tree frame is analyzed to ensure its ability to withstand the impact from an object accidentally dropped overboard. This was accomplished using nonlinear dynamic Finite Element Analysis (FEA). In this study, the framework was struck by a rigid body at terminal velocity, resulting in a given impact energy. Displacements and resultant strain values at critical locations were then compared to allowable limits to ensure compliance to the design requirements.


2019 ◽  
Vol 12 (3) ◽  
pp. 46-57 ◽  
Author(s):  
S. V. Kazantsev

The article presents the results of the author’s research of the impact of a wide range of restrictions and prohibitions applied to theRussian Federation, used by a number of countries for their geopolitical purposes and as a means of competition. The object of study was the impact of anti-Russian sanctions on the development of Oil & Gas industry and defence industry complex ofRussiain 2014–2016. The purpose of the analysis was to assess the impact of sanctions on the volume of oil and gas production, the dynamics of foreign earnings from the export of oil and gas, and of foreign earnings from the sale abroad of military and civilian products of the Russian defence industry complex (DIC). As the research method, the author used the economic analysis of the time series of statistical data presented in open statistics and literature. The author showed that some countries use the anti-Russian sanctions as a means of political, financial, economic, scientific, and technological struggle with the leadership ofRussiaand Russian economic entities. It is noteworthy that their introduction in 2014 coincided with the readiness of theUSto export gas and oil, which required a niche in the international energy market. The imposed sanctions have affected the volume of oil production inRussia, which was one of the factors of reduction of foreign earnings from the country’s oil and gas exports. However, the Russian defence industry complex has relatively well experienced the negative impact of sanctions and other non-market instruments of competition


2021 ◽  
Author(s):  
D. Nathan Meehan

Abstract Is this the end of petroleum engineering as we know it? This prescient question led to the most downloaded paper from onepetro.org in 2019. The events of 2020 resulted in massive layoffs, decreased hiring and many fewer students studying petroleum engineering. In the 2019 paper the authors claimed that the future would hold fewer petroleum engineering jobs and very different types of jobs. This paper incorporates a broader range of data and proposes some specific ways to improve prospects for the discipline of petroleum engineering. The opportunity for a near-term recovery is very high as the world overcomes COVID-19 issues, oil demand recovers and the impact of chronic underinvestment in oil and gas production looms. The world's largest producers have very different abilities to respond to a near-term uptick in demand. Energy transition pressures continue to cap growth in demand; however, demand for petroleum engineers is expected to grow under almost every scenario, but not to pre-2015 levels. Increased demand in CCUS and jobs that improve sustainability of oil and gas will continue to outpace conventional jobs. Data analytics will play an increasingly large role in engineering activities. The "Is it the end?" paper started with a question, a question that I first heard asked in 1977 at the SPE Annual Fall Technical Conference and Exhibition in Denver to 1972 SPE President M. Scott Kraemer. I have heard it many times since then and asked it many times. "Would you recommend that your son or daughter study petroleum engineering?" The answer to that question was pretty easy and unanimously positive in 1977. Keep this question in mind as we review what has happened since the prior paper came out.


Author(s):  
Ikenna A. Okaro ◽  
Longbin Tao

This paper describes how the operation of deep, subsea oil wells can be analyzed and optimized using artificial lift systems. A modest explanation was offered about an enhanced Hubbert model for determining production targets at pre-feed phase of project. In addition, the impact of artificial lifts on the economics of subsea wells facing hyperbolic production decline was illustrated. The principle of Nodal analysis was highlighted and applied to optimize a proposed subsea oil production case. Configurations of a nominally rated rod pump, a multiphase pump and an electrical submersible pump were modelled in a steady-state flow using Pipesim software and the simulated results which were functions of liquid flow rate and pressure distribution across the production system exposed the behavior of the system. The results showed that over 100% volumetric efficiency was achieved using a combination of electrical submersible pump at the bottom hole and a multiphase pump at riser base. A guide is presented on how to predict, analyze and enhance the recovery curve of subsea oil production using artificial lifts and nodal-system analysis. The benefit of this work is an enabling cost-effective approach for ensuring production assurance in deep water oil and gas production.


Energy Policy ◽  
2006 ◽  
Vol 34 (12) ◽  
pp. 1389-1398 ◽  
Author(s):  
David E. Dismukes ◽  
Jeffrey M. Burke ◽  
Dmitry V. Mesyanzhinov

Sign in / Sign up

Export Citation Format

Share Document