United States Navy 501-K34 Gas Turbine Engine RADCON Effort

Author(s):  
Jeffrey S. Patterson ◽  
Kevin D. Fauvell ◽  
Jay McMahon ◽  
Javier O. Moralez

On the afternoon of March 11, 2011 at 2:46pm, a 9.0 magnitude earthquake took place 231 miles northeast of Tokyo, Japan, at a depth of 15.2 miles. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi to provide humanitarian relief aid to Japan. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and are now operating under Radiological Controls (RADCON). This paper will describe the events that lead to Operation Tomodachi, as well as the resultant efforts on the U.S. Navy’s Japanese based gas turbine fleet. In addition, this paper will outline the U.S. Navy’s effort to decontaminate, overhaul and return these RADCON assets back into the fleet.


2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.



Author(s):  
Matthew Driscoll ◽  
Thomas Habib ◽  
William Arseneau

The United States Navy uses the General Electric LM2500 gas turbine engine for main propulsion on its newest surface combatants including the OLIVER HAZARD PERRY (FFG 7) class frigates, SPRUANCE (DD 963) class destroyers, TICONDEROGA (CG 47) class cruisers, ARLIEGH BURKE (DDG 51) class destroyers and SUPPLY (AOE 6) class oilers. Currently, the Navy operates a fleet of over 400 LM2500 gas turbine engines. This paper discusses the ongoing efforts to characterize the availability of the engines aboard ship and pinpoint systems/components that have significant impact on engine reliability. In addition, the program plan to upgrade the LM2500’s standard configuration to improve reliability is delineated.



Author(s):  
Matthew J. Driscoll ◽  
Thomas Habib

Since the early 1970’s, the United States Navy has utilized the General Electric LM2500 gas turbine engine for propulsion aboard its surface combatants including its newest DDG 51 Class Destroyer. These ships have generally operated at a part power operational profile under a COGAG arrangement which has offered system redundancy while exceeding life projections for the gas turbine engines. For its newest ships still in the design phase (LHD 8/LCS/LSC(X)) the Navy intends to continue to utilize gas turbine engines but in different applications including electric drive, high power boost applications in tandem with both diesel engines and electric motor arrangements. Although this paper focuses on the LM2500, its conclusions are meant to apply to a broader scope of future propulsion applications. Specific conclusions are provided describing potential operating profile considerations.



Author(s):  
H. A. Johnson ◽  
G. K. Bhat

At the present time, virtually all superalloys used in Soviet gas turbine engines have been electroslag remelted. The use of this process in the United States has been at a virtual standstill since its inception by Hopkins in 1935. This paper will cover recent development effort on the process and what it offers to the industry. The process itself will be described in detail. Included also will be its advantages, both in metalworking and resultant mechanical properties obtained on actual gas turbine engine components fabricated from electroslag remelted superalloys.



Author(s):  
Eleanor M. Allison ◽  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy. Operation and test of the first production craft revealed deficiencies and less than desirable reliability, but confirmed the validity of its design and ability to perform the mission. After intensive efforts to resolve these problems, reliability trends began to improve as a result of corrective actions incorporated. Today, the LCAC fleet has accrued over 50,000 engine operating hours. Presented here are the changes which have been incorporated into the configuration of the TF40B engine to eliminate both engine unique and vehicle related discrepancies revealed through fleet experience. These changes have contributed significantly toward the improvement of the engine’s mean time between removal (MTBR) and mean time between failure (MTBF) rates.



Author(s):  
Sidney G. Liddle

A study was made of 526 advanced coal-fired locomotive concepts of which 182 used gas turbine engines. This paper summarizes the results of the gas turbine portion of the study. Fifteen forms of coal including coal derived liquids, 15 different combustors, and five types of gas turbine engines were investigated. The principal means of comparing the different engines is by their life-cycle costs. The reason for this approach is that the greatest attraction of coal-fired locomotives is their low operating costs relative to that of Diesel-electric locomotives now in use. Many of the coal-fired locomotives have half the life-cycle costs of comparable Diesel-electrics. Although the analysis was made for conditions in the United States, the results are applicable to other countries.



Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Brian D. Nicholson

In this paper, the authors present the results of recent developments demonstrating that ultra-high temperature compliant foil bearings are suitable for application in a wide range of high temperature turbomachinery including gas turbine engines, supercritical CO2 power turbines and automotive turbochargers as supported by test data showing operation of foil bearings at temperatures to 870°C (1600°F). This work represents the culmination of efforts begun in 1987, when the U.S. Air Force established and led the government and industry collaborative Integrated High Performance Turbine Engine Technology (IHPTET) program. The stated goal of IHPTET was to deliver twice the propulsion capability of turbine engines in existence at that time. Following IHPTET, the Versatile Affordable Advanced Turbine Engines (VAATE) program further expanded on the original goals by including both versatility and affordability as key elements in advancing turbine engine technology. Achieving the stated performance goals would require significantly more extreme operating conditions including higher temperatures, pressures and speeds, which in turn would require bearings capable of sustaining temperatures in excess of 815°C (1500°F). Similarly, demands for more efficient automotive engines and power plants are subjecting the bearings in turbochargers and turbogenerators to more severe environments. Through the IHPTET and VAATE programs, the U.S. has made considerable research investments to advancing bearing technology, including active magnetic bearings, solid and vapor phase lubricated rolling element bearings, ceramic/hybrid ceramic bearings, powder lubricated bearings and compliant foil gas bearings. Thirty years after the IHPTET component goal of developing a bearing capable of sustained operation at temperatures above 540°C and potentially as high as 815°C (1500°F) recent testing has demonstrated achievement of this goal with an advanced, ultra-high temperature compliant foilgas bearing. Achieving this goal required a combination of high temperature foil material, a unique elastic-tribo-thermal barrier coating (KOROLON 2250) and a self-adapting compliant configuration. The authors describe the experimental hardware designs and design considerations of the two differently sized test rigs used to demonstrate foil bearings operating above 815°C (1500°F). Finally, the authors present and discuss the results of testing at temperatures to 870°C (1600°F).



1976 ◽  
Author(s):  
M. Gell ◽  
K. M. Thomas

Directionally solidified eutectic airfoils for advanced gas turbine engine applications are undergoing intensive development in a number of laboratories in the United States and Europe. These materials offer the potential of a 40 percent or greater increase in creep strength for high work engines or a 50 K or more increase in blade metal temperature for growth versions of current engines. The development status of these alloys will be described with emphasis on casting techniques, mechanical properties, and coatings for the gamma/gamma prime + delta (γ / γ′ + δ) D.S. eutectic. The implications of the elastic anisotropy and low off-axis properties of the D.S. eutectics to turbine blade design and analysis will be discussed.



Author(s):  
John S. Siemietkowski ◽  
Walter S. Williams

The General Electric LM2500 Marine Gas Turbine, currently used by the United States Navy as main propulsion on various classes of ships, lends itself very easily to a procedure known as photoborescopy. Photoborescopy is that process where discrete, color photographs are taken of various internal parts of the engine. Borescoping in itself is not new, but maximizing the borescopes capabilities is a program that the U.S. Navy continuously is developing at the Naval Ship Systems Engineering Station (NAVSSES) in Philadelphia, Pennsylvania. This paper will describe the photoborescopy technique used by NAVSSES and also give and show graphically the Fleet experience with two LM2500’s which had accumulated 10,000 hours of successful at-sea operation. The opinions expressed herein are those of the author and not necessarily of the Department of Defense or the Navy Department.



Author(s):  
Daniel E. Caguiat ◽  
David M. Zipkin ◽  
Jeffrey S. Patterson

Naval Surface Warfare Center Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 conducted a land-based evaluation of fouling-resistant compressor coatings for the 501-K17 Ship Service Gas Turbine Generator (SSGTG) [1]. The purpose of this evaluation was to determine whether such coatings could be used to decrease the rate of compressor fouling and associated fuel consumption. Based upon favorable results from the land-based evaluation, a similar coated compressor gas turbine engine was installed onboard a United States Navy vessel. Two data acquisition computer (DAC) systems and additional sensors necessary to monitor and compare both the coated test engine and an uncoated control engine were added. The goal of this shipboard evaluation was to verify land-based results in a shipboard environment. Upon completion of the DAC installation, the two gas turbine engines were operated and initial data was stored. Shipboard data was compared to land-based data to verify validity and initial compressor performance. The shipboard evaluation is scheduled for completion in June 2003, at which time data will be analyzed and results published.



Sign in / Sign up

Export Citation Format

Share Document