Separation Control on a Very High Lift Low Pressure Turbine Airfoil Using Pulsed Vortex Generator Jets

Author(s):  
Ralph J. Volino ◽  
Olga Kartuzova ◽  
Mounir B. Ibrahim

Boundary layer separation control has been studied using vortex generator jets (VGJs) on a very high lift, low-pressure turbine airfoil. Experiments were done under high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Instantaneous velocity profile measurements were acquired in the suction surface boundary layer. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000 and 50,000. Jet pulsing frequency, duty cycle, and blowing ratio were all varied. Computational results from a large eddy simulation of one case showed reattachment in agreement with the experiment. In cases without flow control, the boundary layer separated and did not reattach. With the VGJs, separation control was possible even at the lowest Reynolds number. Pulsed VGJs were more effective than steady jets. At sufficiently high pulsing frequencies, separation control was possible even with low jet velocities and low duty cycles. At lower frequencies, higher jet velocity was required, particularly at low Reynolds numbers. Effective separation control resulted in an increase in lift and a reduction in total pressure losses. Phase averaged velocity profiles and wavelet spectra of the velocity show the VGJ disturbance causes the boundary layer to reattach, but that it can re-separate between disturbances. When the disturbances occur at high enough frequency, the time available for separation is reduced, and the separation bubble remains closed at all times.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Ralph J. Volino ◽  
Olga Kartuzova ◽  
Mounir B. Ibrahim

Boundary layer separation control has been studied using vortex generator jets (VGJs) on a very high lift, low-pressure turbine airfoil. Experiments were done under high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Instantaneous velocity profile measurements were acquired in the suction surface boundary layer. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000 and 50,000. Jet pulsing frequency, duty cycle, and blowing ratio were all varied. Computational results from a large eddy simulation of one case showed reattachment in agreement with the experiment. In cases without flow control, the boundary layer separated and did not reattach. With the VGJs, separation control was possible even at the lowest Reynolds number. Pulsed VGJs were more effective than steady jets. At sufficiently high pulsing frequencies, separation control was possible even with low jet velocities and low duty cycles. At lower frequencies, higher jet velocity was required, particularly at low Reynolds numbers. Effective separation control resulted in an increase in lift and a reduction in total pressure losses. Phase averaged velocity profiles and wavelet spectra of the velocity show the VGJ disturbance causes the boundary layer to reattach, but that it can reseparate between disturbances. When the disturbances occur at high enough frequency, the time available for separation is reduced, and the separation bubble remains closed at all times.


Author(s):  
Ralph J. Volino ◽  
Olga Kartuzova ◽  
Mounir B. Ibrahim

Boundary layer separation control has been studied using vortex generator jets (VGJs) on a very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000, 50,000 and 100,000. Jet pulsing frequency, duty cycle, and blowing ratio were all varied. In all cases without flow control, the boundary layer separated and did not reattach. With the VGJs, separation control was possible even at the lowest Reynolds number. Pulsed VGJs were more effective than steady jets. At sufficiently high pulsing frequencies, separation control was possible even with low jet velocities and low duty cycles. At lower frequencies, higher jet velocity was required, particularly at low Reynolds numbers. Effective separation control resulted in an increase in lift of up to 20% and a reduction in total pressure losses of up to 70%. Simulations of the flow using an unsteady RANS code with the four equation Transition-sst model produced good agreement with experiments in cases without flow control, correctly predicting separation, transition and reattachment. In cases with VGJs, however, the CFD did not predict the reattachment observed in the experiments.


Author(s):  
Ralph J. Volino

Boundary layer separation has been studied on a very high lift, low-pressure turbine airfoil in the presence of unsteady wakes. Experiments were done under low (0.6%) and high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Wakes were produced from moving rods upstream of the cascade. Flow coefficients were varied from 0.35 to 1.4 and wake spacing was varied from 1 to 2 blade spacings, resulting in dimensionless wake passing frequencies F = fLj-te/Uave (f is the frequency, Lj-te is the length of the adverse pressure gradient region on the suction surface of the airfoils, and Uave is the average freestream velocity) ranging from 0.14 to 0.56. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Instantaneous velocity profile measurements were acquired in the suction surface boundary layer and downstream of the cascade. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000 and 50,000. In cases without wakes, the boundary layer separated and did not reattach. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. At lower frequencies the boundary layer separated between wakes. Background freestream turbulence had some effect on separation, but its role was secondary to the wake effect.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Ralph J. Volino

Boundary layer separation has been studied on a very high lift, low pressure turbine airfoil in the presence of unsteady wakes. Experiments were done under low (0.6%) and high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Wakes were produced from moving rods upstream of the cascade. Flow coefficients were varied from 0.35 to 1.4 and wake spacing was varied from one to two blade spacings, resulting in dimensionless wake passing frequencies F=fLj-te/Uave (f is the frequency, Lj-te is the length of the adverse pressure gradient region on the suction surface of the airfoils, and Uave is the average freestream velocity) ranging from 0.14 to 0.56. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Instantaneous velocity profile measurements were acquired in the suction surface boundary layer and downstream of the cascade. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000 and 50,000. In cases without wakes, the boundary layer separated and did not reattach. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. At lower frequencies the boundary layer separated between wakes. Background freestream turbulence had some effect on separation, but its role was secondary to the wake effect.


Author(s):  
Vijay K. Garg

The present work details a computational study, using the Glenn-HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data of Bons et al. [1] for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.


Author(s):  
Ralph J. Volino

Boundary layer separation control with pulsed vortex generator jets (VGJs) has been studied on a very high lift, low-pressure turbine airfoil in the presence of unsteady wakes. Experiments were done under low (0.6%) and high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000 and 50,000. Wakes were produced from moving rods upstream of the cascade with flow coefficient 1.13 and rod spacing equal 2 blade pitches, resulting in a dimensionless wake passing frequency F = fLj-te/Uave = 0.14, where f is the frequency, Lj-te is the length of the adverse pressure gradient region on the suction surface, and Uave is the average freestream velocity. The VGJs were injected at the beginning of the adverse pressure gradient region on the suction surface with maximum jet velocity in each pulse equal to the local freestream velocity and a jet duty cycle of 10%. Several different timings of the VGJs with respect to the wakes were considered. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Instantaneous velocity profile measurements were acquired in the suction surface boundary layer and downstream of the cascade. In cases without VGJs, the boundary layer momentarily reattached in response to the wake passing, but separated between wakes. The VGJs also caused reattachment, and if the VGJ pulsing frequency was sufficiently high, separation was largely suppressed for the full wake passing cycle. The timing of the VGJs with respect to the wakes was not very important. The jet pulsing frequency needed for separation control was about the same as found previously in cases without wakes. The background freestream turbulence effect was negligible in the presence of the larger wake and VGJ disturbances.


Author(s):  
Jeffrey P. Bons ◽  
Rolf Sondergaard ◽  
Richard B. Rivir

The application of pulsed vortex generator jets to control separation on the suction surface of a low pressure turbine blade is reported. Blade Reynolds numbers in the experimental, linear turbine cascade match those for high altitude aircraft engines and aft stages of industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets have a 30 degree pitch and a 90 degree skew to the freestream direction. Jet flow oscillations up to 100 Hz are produced using a high frequency solenoid feed valve. Results are compared to steady blowing at jet blowing ratios less than 4 and at two chordwise positions upstream of the nominal separation zone. Results show that pulsed vortex generator jets produce a bulk flow effect comparable to that of steady jets with an order of magnitude less massflow. Boundary layer traverses and blade static pressure distributions show that separation is almost completely eliminated with the application of unsteady blowing. Reductions of over 50% in the wake loss profile of the controlled blade were measured. Experimental evidence suggests that the mechanism for unsteady control lies in the starting and ending transitions of the pulsing cycle rather than the injected jet stream itself. Boundary layer spectra support this conclusion and highlight significant differences between the steady and unsteady control techniques. The pulsed vortex generator jets are effective at both chordwise injection locations tested (45% and 63% axial chord) covering a substantial portion of the blade suction surface. This insensitivity to injection location bodes well for practical application of pulsed VGJ control where the separation location may not be accurately known a priori.


Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


Author(s):  
Hualing Luo ◽  
Weiyang Qiao ◽  
Kaifu Xu

LES (Large-Eddy Simulation) computations for a high-lift low-pressure turbine profile equipped with the span-wise groove on the suction surface are done to investigate the mechanism of the surface groove for separated flow transition control under steady inflow conditions, employing the dynamic Smagorinsky model. In addition to the baseline case (no groove), three groove positions which depend on the relative position of the groove trailing edge and the separation point on the suction surface are considered at two Reynolds numbers (Re, based on the inlet velocity and axial chord length). The results show that all grooves can reduce the calculated loss for Re = 50000, due to the further upstream transition inception in the separated shear layer. The analyses indicate two kinds of control mechanism such as the thinning of boundary layer behind the groove and the introduction of disturbances within the groove, depending on the groove position and Reynolds number. At Re = 50000, for the groove located upstream of the separation point, the reason for the further upstream transition inception location is the thinning of boundary layer behind the groove, and for the groove located downstream of the separation point, the reason is the introduction of disturbances within the groove. At Re = 100000, disturbances can also be generated within the groove located upstream of the separation point, promoting earlier transition inception.


Sign in / Sign up

Export Citation Format

Share Document