Highly Loaded Low-Pressure Turbine: Design, Numerical, and Experimental Analysis

Author(s):  
J. T. Schmitz ◽  
S. C. Morris ◽  
R. Ma ◽  
T. C. Corke ◽  
J. P. Clark ◽  
...  

The performance and detailed flow physics of a highly loaded, transonic, low-pressure turbine stage has been investigated numerically and experimentally. The mean rotor Zweifel coefficient was 1.35, with dh/U2 = 2.8, and a total pressure ratio of 1.75. The aerodynamic design was based on recent developments in boundary layer transition modeling. Steady and unsteady numerical solutions were used to design the blade geometry as well as to predict the design and off-design performance. Measurements were acquired in a recently developed, high-speed, rotating turbine facility. The nozzle-vane only and full stage characteristics were measured with varied mass flow, Reynolds number, and free-stream turbulence. The efficiency calculated from torque at the design speed and pressure ratio of the turbine was found to be 90.6%. This compared favorably to the mean line target value of 90.5%. This paper will describe the measurements and numerical solutions in detail for both design and off-design conditions.

2004 ◽  
Vol 127 (4) ◽  
pp. 747-754 ◽  
Author(s):  
M. Vera ◽  
H. P. Hodson ◽  
R. Vazquez

This paper presents the effect of a single spanwise two-dimensional wire upon the downstream position of boundary layer transition under steady and unsteady inflow conditions. The study is carried out on a high turning, high-speed, low pressure turbine (LPT) profile designed to take account of the unsteady flow conditions. The experiments were carried out in a transonic cascade wind tunnel to which a rotating bar system had been added. The range of Reynolds and Mach numbers studied includes realistic LPT engine conditions and extends up to the transonic regime. Losses are measured to quantify the influence of the roughness with and without wake passing. Time resolved measurements such as hot wire boundary layer surveys and surface unsteady pressure are used to explain the state of the boundary layer. The results suggest that the effect of roughness on boundary layer transition is a stability governed phenomena, even at high Mach numbers. The combination of the effect of the roughness elements with the inviscid Kelvin–Helmholtz instability responsible for the rolling up of the separated shear layer (Stieger, R. D., 2002, Ph.D. thesis, Cambridge University) is also examined. Wake traverses using pneumatic probes downstream of the cascade reveal that the use of roughness elements reduces the profile losses up to exit Mach numbers of 0.8. This occurs with both steady and unsteady inflow conditions.


Author(s):  
Rene Pecnik ◽  
Wolfgang Sanz ◽  
Paul Pieringer

A numerical study was performed to investigate unsteady flow transition under the effect of periodically passing wakes on a highly loaded low-pressure turbine cascade. The simulation was done by a time-accurate 2D Navier-Stokes solver, which was developed at the Institute for Thermal Turbo-machinery and Machine Dynamics. The transition process was modeled by coupling a baseline two-equation k-ω turbulence model with an intermittency transport equation via the turbulence production term. The experimental investigations on the highly loaded low-pressure turbine cascade, called T106D-EIZ were carried out at the Institut fu¨r Strahlantriebe der Universita¨t der Bundeswehr Mu¨nchen (Germany). The available experimental data contains three test cases by varying the isentropic exit Reynolds number from 200.000 to 60.000. The objective of this paper is to show the ability of an intermittency transport equation to model unsteady wake induced transition and separation mechanisms. The numerical results are compared by the pressure distribution, shape factor and loss behavior to the experiments.


Author(s):  
M. Vera ◽  
H. P. Hodson ◽  
R. Vazquez

This paper presents the effect of a single spanwise 2D wire upon the downstream position of boundary layer transition under steady and unsteady inflow conditions. The study is carried out on a high turning, high-speed, low pressure turbine (LPT) profile designed to take account of the unsteady flow conditions. The experiments were carried out in a transonic cascade wind tunnel to which a rotating bar system had been added. The range of Reynolds and Mach numbers studied includes realistic LPT engine conditions and extends up to the transonic regime. Losses are measured to quantify the influence of the roughness with and without wake passing. Time resolved measurements such as hot wire boundary layer surveys and surface unsteady pressure are used to explain the state of the boundary layer. The results suggest that the effect of roughness on boundary layer transition is a stability governed phenomena, even at high Mach numbers. The combination of the effect of the roughness elements with the inviscid Kelvin-Helmholtz instability responsible for the rolling up of the separated shear layer (Stieger [1]) is also examined. Wake traverses using pneumatic probes downstream of the cascade reveal that the use of roughness elements reduces the profile losses up to exit Mach numbers of 0.8. This occurs with both steady and unsteady inflow conditions.


Author(s):  
Frank Eulitz ◽  
Karl Engel

A time-accurate Reynolds-averaged Navier-Stokes solver has been extended for a phenomenological study of wake/bladerow interaction in a low pressure turbine near midspan. To qualitatively account for unsteady laminar-turbulent boundary layer transition, a variant of the Abu-Ghanam Shaw transition correlation has been coupled with the Spalart-Allmaras one-equation turbulence model. The method is shown to be capable of capturing separated-flow and wake-induced transition, as well as becalming and relaminarization effects. The model turbine investigated consists of three stator and two rotor rows. Instantaneous Mach number and eddy-viscosity plots are presented to monitor the wake migration and interaction with downstream boundary layers. Especially on the suction sides, very large fluctuations of the skin friction coefficient are observed. Effects of the near and far wakes are identified.


1985 ◽  
Vol 107 (1) ◽  
pp. 127-134 ◽  
Author(s):  
H. P. Hodson

The state of the boundary layers near the leading edge of a high-speed turbine blade has been investigated, in cascade, using an array of surface-mounted, constant-temperature, hot-film anemometers. The measurements are interpreted with the aid of inviscid and viscous prediction codes. The effects of Reynolds number, compressibility, incidence, and free-stream turbulence are described. In all cases, the initial development of the boundary layers was extremely complex and, even at design conditions, separation and reattachment, transition and relaminarization were found to occur.


2004 ◽  
Vol 129 (1) ◽  
pp. 14-22 ◽  
Author(s):  
T. J. Praisner ◽  
E. A. Grover ◽  
M. J. Rice ◽  
J. P. Clark

The ability to predict boundary layer transition locations accurately on turbomachinery airfoils is critical both to evaluate aerodynamic performance and to predict local heat-transfer coefficients with accuracy. Here we report on an effort to include empirical transition models developed in Part I of this report in a Reynolds averaged Navier-Stokes (RANS) solver. To validate the new models, two-dimensional design optimizations utilizing transitional RANS simulations were performed to obtain a pair of low-pressure turbine airfoils with the objective of increasing airfoil loading by 25%. Subsequent experimental testing of the two new airfoils confirmed pre-test predictions of both high and low Reynolds number loss levels. In addition, the accuracy of the new transition modeling capability was benchmarked with a number of legacy cascade and low-pressure turbine (LPT) rig data sets. Good agreement between measured and predicted profile losses was found in both cascade and rig environments. However, use of the transition modeling capability has elucidated deficiencies in typical RANS simulations that are conducted to predict component performance. Efficiency-versus-span comparisons between rig data and multi-stage steady and time-accurate LPT simulations indicate that loss levels in the end wall regions are significantly under predicted. Possible causes for the under-predicted end wall losses are discussed as well as suggestions for future improvements that would make RANS-based transitional simulations more accurate.


2021 ◽  
Author(s):  
Kristina Durovic ◽  
Luca De Vincentiis ◽  
Daniele Simoni ◽  
Davide Lengani ◽  
Jan Pralits ◽  
...  

Author(s):  
Menal İlhan ◽  
M Tayyip Gürbüz ◽  
Sercan Acarer

The vast majority of unmanned aerial vehiches are propeller-driven with low speed. For higher speeds and longer ranges, new cost-effective microjets, which operate efficiently in both “fly-fast” and “loiter” modes are required. As a solution, a novel variable-cycle geared micro-turbofan architecture without the typical components of booster and low-pressure turbine is considered. This study discusses a key element, the low-pressure compression system. Instead of a separate and complicated booster to extract more power from the basic turbine, it is proposed to incorporate its positive functionality in the fan root. By preliminary and detailed fluid models, and structural concerns, systematic comparisons are made on demonstrative and representative cases to explore the feasibility of the proposal. Beyond the required very wide-chord design, the concept yields to a significantly increased pressurization and axial velocity at the fan root and exact opposite at the rest, causing extreme twist. The corresponding transonic stator root greatly increases downstream mixing losses. Moreover, a limitation is found to be the downstream compressor duct due to a notable increase in the diffusion requirements. Findings present that the concept is dramatically different from typical highly-loaded fans and this paper attempts to present new design guidelines.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Marion Mack ◽  
Reinhard Niehuis ◽  
Andreas Fiala ◽  
Yavuz Guendogdu

The current work investigates the performance benefits of pulsed blowing with frequencies up to 10 kHz on a highly loaded low pressure turbine (LPT) blade. The influence of blowing position and frequency on the boundary layer and losses are investigated. Pressure profile distribution measurements and midspan wake traverses are used to assess the effects on the boundary layer under a wide range of Reynolds numbers from 50,000 to 200,000 at a cascade exit Mach number of 0.6 under steady as well as periodically unsteady inflow conditions. High-frequency blowing at sufficient amplitudes is achieved with the use of fluidic oscillators. The integral loss coefficient calculated from wake traverses is used to assess the optimum pressure ratio driving the fluidic oscillators. The results show that pulsed blowing with fluidic oscillators can significantly reduce the profile losses of the highly loaded LPT blade T161 with a moderate amount of air used in a wide range of Reynolds numbers under both steady and unsteady inflow conditions.


Sign in / Sign up

Export Citation Format

Share Document