Performance and Boundary Layer Development of a High Turning Compressor Cascade at Sub- and Supercritical Flow Conditions

Author(s):  
Christoph Bode ◽  
Dragan Kožulović ◽  
Udo Stark ◽  
Heinz Hoheisel

Based on current numerical investigations, the present paper reports on new Q2D midspan-calculations and results for the well known high turning (Δβ = 50°) supercritical (Ma1 = 0.85) compressor cascade V2. A Q2D treatment of the problem was chosen in order to avoid the difficult modelling of the porous endwalls in a corresponding 3D approach. All simulations were done with the RANS solver TRACE of the DLR Cologne in combination with modified versions of the Wilcox turbulence model and Langtry/Menter transition model. Existing experimental Q2D midspan-results for the V2 compressor cascade were used to demonstrate the improved ability of the numerical code to determine performance characteristics, blade pressure and Mach number distributions as well as boundary layer parameter and velocity distributions. The loss characteristics show minimum loss regions when plotted against inlet angle or axial velocity density ratio. Within these regions, increasing with decreasing Mach number, the experimental results were adequately predicted. Outside these regions it turned out difficult to reproduce the experimental results due to increasing boundary layer separation. Furthermore, the prediction quality was very good for subsonic conditions (Ma1 = 0.60) and still reasonable for supercritical conditions (Ma1 = 0.85), where shock/boundary layer interaction made the prediction more difficult.

Author(s):  
Mizuho Aotsuka ◽  
Toshinori Watanabe ◽  
Yasuo Machina

The unsteady aerodynamic characteristics of an oscillating compressor cascade composed of Double-Circular-Arc airfoil blades were both experimentally and numerically studied under transonic flow conditions. The study aimed at clarifying the role of shock waves and boundary layer separation due to the shock boundary layer interaction on the vibration characteristics of the blades. The measurement of the unsteady aerodynamic moment on the blades was conducted in a transonic linear cascade tunnel using an influence coefficient method. The cascade was composed of seven DCA blades, the central one of which was an oscillating blade in a pitching mode. The unsteady moment was measured on the central blade as well as the two neighboring blades. The behavior of the shock waves was visualized through a schlieren technique. A quasi-three dimensional Navier-Stokes code was developed for the present numerical simulation of the unsteady flow fields around the oscillating blades. A k-ε turbulence model was utilized to adequately simulate the flow separation phenomena caused by the shock-boundary layer interaction. The experimental and numerical results complemented each other and enabled a detailed understanding of the unsteady aerodynamic behavior of the cascade. It was found that the surface pressure fluctuations induced by the shock oscillation were the governing factor for the unsteady aerodynamic moment acting on the blades. Such pressure fluctuations were primarily induced by the movement of impingement point of the shock on the blade surface. During the shock oscillation the separated region caused by the shock boundary layer interaction also oscillated along the blade surface, and induced additional pressure fluctuations. The shock oscillation and the movement of the separated region were found to play the principal role in the unsteady aerodynamic and vibration characteristics of the transonic compressor cascade.


Author(s):  
Ralf M. Bell ◽  
Leonhard Fottner

Experimental investigations of the shock/boundary-layer interaction were carried out in a highly loaded compressor cascade under realistic turbomachinery conditions in order to improve the accuracy of semi-empirical flow and loss prediction methods. Different shock positions and strengths were obtained by variations of inlet flow angle and inlet Mach number. The free stream turbulence intensity, depending on the inlet Mach number, changed between 4% and 8%. The influence of the inlet Reynolds number based on blade chord is also examined for two different values (Re1=450000, 900000). Schlieren pictures of the transonic cascade flow reveal an unsteady flow behavior with different shock configurations, depending on the pre-shock Mach number. Wake distributions and boundary-layer measurements with the Laser two-focus velocimetry show that the increase of total pressure loss with increasing inlet Mach number is mainly due to the shock/boundary-layer interaction. The shock interaction with a laminar/transitional boundary-layer causes a wide streamwise pressure diffusion, clearly shown by profile pressure distributions. This has a strong influence on the flow outside of the boundary-layer presented by a quantitative Schlieren image. The transition process, investigated with the analysis of thin-film signals, is induced by the shock-wave and occurs above a separated-flow region. At the higher Reynolds number a shock-induced transition takes place without separation.


1992 ◽  
Vol 114 (3) ◽  
pp. 494-503 ◽  
Author(s):  
H. A. Schreiber ◽  
H. Starken

Experiments have been performed in a supersonic cascade facility to elucidate the fluid dynamic phenomena and loss mechanism of a strong shock-wave turbulent boundary layer interaction in a compressor cascade. The cascade geometry is typical for a transonic fan tip section that operates with a relative inlet Mach number of 1.5, a flow turning of about 3 deg, and a static pressure ratio of 2.15. The strong oblique and partly normal blade passage shock-wave with a preshock Mach number level of 1.42 to 1.52 induces a turbulent boundary layer separation on the blade suction surface. The free-stream Reynolds number based on chord length was about 2.7 × 106. Cascade overall performance, blade surface pressure distributions, Schlieren photographs, and surface visualizations are presented. Detailed Mach number and flow direction profiles of the interaction region (lambda shock) and the corresponding boundary layer have been determined using a Laser-2-Focus anemometer. The obtained results indicated that the axial blade passage stream sheet contraction (axial velocity density ratio) has a significant influence on the mechanism of strong interaction and the resulting total pressure losses.


1991 ◽  
Author(s):  
H. A. Schreiber ◽  
H. Starken

Experiments have been performed in a Supersonic cascade facility to elucidate the fluid dynamic phenomena and loss mechanism of a strong shock-wave turbulent boundary layer interaction in a compressor cascade. The cascade geometry is typical for a transonic fan tip section that operates with a relative inlet Mach number of 1.5, a flow turning of about 3 degrees, and a static pressure ratio of 2.15. The strong oblique and partly normal blade passage shock-wave with a pre-shock Mach number level of 1.42 to 1.52 induces a turbulent boundary layer separation on the blade suction surface. Freestream Reynolds number based on chord length was about 2.7×106. Cascade overall performance, blade surface pressure distributions, Schlieren photographs, and surface visualisations are presented. Detailed Mach number and flow direction profiles of the interaction region (lambda shock) and the corresponding boundary layer have been determined using a Laser-2-Focus anemometer. The obtained results indicated that the axial blade passage stream sheet contraction (axial velocity density ratio) has a significant influence on the mechanism of strong interaction and the resulting total pressure losses.


Author(s):  
G. A. Gerolymos ◽  
E. Blin ◽  
H. Quiniou

The prediction of unsteady flow in vibrating transonic cascades is essential in assessing the aeroelastic stability of fans and compressors. In the present work an existing computational code, based on the numerical integration of the unsteady Euler equations, in blade-to-blade surface formulation, is validated by comparison with available theoretical and experimental results. Comparison with the flat plate theory of Verdon is, globally, satisfactory. Nevertheless, the computational results do not exhibit any particular behaviour at acoustic resonance. The use of a 1-D nonreflecting boundary condition does not significantly alter the results. Comparison of the computational method with experimental data from started and unstarted supersonic flows, with strong shock waves, reveals that, notwithstanding the globally satisfactory performance of the method, viscous effects are prominent at the shock wave/boundary layer interaction regions, where boundary layer separation introduces a pressure harmonic phase shift, which is not presicted by inviscid methods.


1974 ◽  
Vol 18 (03) ◽  
pp. 153-168
Author(s):  
N. Matheson ◽  
P. N. Joubert

A simple so-called 'equivalent' body of revolution is proposed for reflex ship forms in an attempt to simplify calculation of the boundary layer over a ship's hull when there is no wavemaking. How­ever, exhaustive testing of one body of revolution did not produce a favorable comparison with re­sults for the corresponding reflex model. Gadd's recently proposed theory was used to calculate the boundary-layer development over the body of revolution. Reasonable agreement was obtained between the calculated and experimental results.


Author(s):  
R. Fuchs ◽  
W. Steinert ◽  
H. Starken

A transonic compressor rotor cascade designed for an inlet Mach number of 1.09 and 14 degrees of flow turning has been redesigned for higher loading by an increased pitch-to-chord ratio. Test results, showing the influence of inlet Mach number and flow angle on cascade performance are presented and compared to data of the basic design. Loss-levels of both, the original and the redesigned higher loaded blade were identical at design condition, but the new design achieved even lower losses at lower inlet Mach numbers. The computational design and analysis has been performed by a fast inviscid time-dependent code coupled to a viscous direct/inverse integral boundary-layer code. Good agreement was achieved between measured and predicted surface Mach number distributions as well as exit-flow angles. A boundary-layer visualization method has been used to detect laminar separation bubbles and turbulent separation regions. Quantitative results of measured bubble positions are presented and compared to calculated results.


Sign in / Sign up

Export Citation Format

Share Document