The Influence of Humidity on the Creep Life of a High Pressure Gas Turbine Blade: Part II—Case Study

Author(s):  
S. Eshati ◽  
P. Laskaridis ◽  
A. Haslam ◽  
P. Pilidis

The determination of the rate of heat transfer from the turbine blade in a cross flow is important in hot section gas turbine life assessment. For design purposes, the rate of heat transfer is normally fixed by semi-empirical correlations. These correlations require knowledge of fluid properties which depend on temperature. For gases these properties are normally available only for the dry state, thus the possible effect of the water vapour content has been overlooked. Many gas turbines operate in environments in which air humidity is very low and therefore has little influence on gas turbine performance. However humidity becomes more important in hot, humid climates where there are large variations in ambient absolute humidity, especially in hot and humid climates. The aim of this paper is to investigate and present the effect of humidity at different operating conditions on the turbine blade coolant heat transfer and blade creep life. The effect of humidity was considered only on the air coolant side. he The heat transfer coefficient on the hot side was calculated for dry hot gas. This avoided the balancing effect of each other (heat transfer coefficient coolant side and hot side). The WAR at each operating point is quantified based on the ambient temperature and the relative humidity (0%–100%). Results showed that with increasing WAR the blade inlet coolant temperature reduced along the blade span. The blade metal temperature at each section was reduced as WAR increased, which in turn increased the blade creep life. The increase in WAR increased the specific heat of the coolant and increased the heat transfer capacity of the coolant air flow. Different operating points were also evaluated at different WAR and Tamb to identify the effect of WAR on the creep life. The results showed that an increase in WAR increased the blade creep life. The creep life of the blade at each section of interest was obtained as a function of the blade section stress and the blade metal section temperature using the LMP approach.

2000 ◽  
Vol 122 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Gm. S. Azad ◽  
Je-Chin Han ◽  
Shuye Teng ◽  
Robert J. Boyle

Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a two-dimensional model of a first-stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1, 1.5, and 2.5 percent of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 and 9.7 percent at the cascade inlet. Static pressure measurements are made in the midspan and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip heat transfer coefficient distribution. Heat transfer coefficient also increases about 15–20 percent along the leakage flow path at higher turbulence intensity level of 9.7 over 6.1 percent. [S0889-504X(00)00404-9]


Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

The transition-piece of a gas turbine engine is subjected to high thermal loads as it collects high temperature combustion products from the gas generator to a turbine. This generally produces high thermal stress levels in the casing of the transition piece, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the transition-piece life span and to assure safe operations. The present study aims to investigate the aero-thermal behaviour of a gas turbine engine transition-piece and in particular to evaluate working temperatures of the casing in relation to the flow and heat transfer situation inside and outside the transition-piece. Typical operating conditions are considered to determine the amount of heat transfer from the gas to the casing by means of CFD. Both conjugate approach and wall fixed temperature have been considered to compute the heat transfer coefficient, and more in general, the transition-piece thermal loads. Finally a discussion on the most convenient heat transfer coefficient expression is provided.


2002 ◽  
Vol 124 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Gm Salam Azad ◽  
Je-Chin Han ◽  
Ronald S. Bunker ◽  
C. Pang Lee

This study investigates the effect of a squealer tip geometry arrangement on heat transfer coefficient and static pressure distributions on a gas turbine blade tip in a five-bladed stationary linear cascade. A transient liquid crystal technique is used to obtain detailed heat transfer coefficient distribution. The test blade is a linear model of a tip section of the GE E3 high-pressure turbine first stage rotor blade. Six tip geometry cases are studied: (1) squealer on pressure side, (2) squealer on mid camber line, (3) squealer on suction side, (4) squealer on pressure and suction sides, (5) squealer on pressure side plus mid camber line, and (6) squealer on suction side plus mid camber line. The flow condition during the blowdown tests corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. Results show that squealer geometry arrangement can change the leakage flow and results in different heat transfer coefficients to the blade tip. A squealer on suction side provides a better benefit compared to that on pressure side or mid camber line. A squealer on mid camber line performs better than that on a pressure side.


2001 ◽  
Author(s):  
Gm Salam Azad ◽  
Je-Chin Han ◽  
Ronald S. Bunker ◽  
C. Pang Lee

Abstract This study investigates the effect of a squealer tip geometry arrangement on heat transfer coefficient and static pressure distributions on a gas turbine blade tip in a five-bladed stationary linear cascade. A transient liquid crystal technique is used to obtain detailed heat transfer coefficient distribution. The test blade is a linear model of a tip section of the GE E3 high-pressure turbine first stage rotor blade. Six tip geometry cases are studied: 1) squealer on pressure side, 2) squealer on mid camber line, 3) squealer on suction side, 4) squealer on pressure and suction sides, 5) squealer on pressure side plus mid camber line, and 6) squealer on suction side plus mid camber line. The flow condition corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1 × 106. Results show that squealer geometry arrangement can change the leakage flow and results in different heat transfer coefficients to the blade tip. A squealer on suction side provides a better benefit compared to that on pressure side or mid camber line. A squealer on mid camber line performs better than that on a pressure side.


Author(s):  
E. Burberi ◽  
D. Massini ◽  
L. Cocchi ◽  
L. Mazzei ◽  
A. Andreini ◽  
...  

Increasing turbine inlet temperature is one of the main strategies used to accomplish the demands of increased performance of modern gas turbines. As a consequence, optimization of the cooling system is of paramount importance in gas turbine development. Leading edge represents a critical part of cooled nozzles and blades, given the presence of the hot gases stagnation point and the unfavourable geometry for cooling. This paper reports the results of a numerical investigation aimed at assessing the rotation effects on the heat transfer distribution in a realistic leading edge internal cooling system of a high pressure gas turbine blade. The numerical investigation was carried out in order to support and to allow an in-depth understanding of the results obtained in a parallel experimental campaign. The model is composed of a trapezoidal feeding channel which provides air to the cold bridge system by means of three large racetrack-shaped holes, generating coolant impingement on the internal concave leading edge surface, whereas four big fins assure the jets confinement. Air is then extracted through 4 rows of 6 holes reproducing the external cooling system composed of shower-head and film cooling holes. Experiments were performed in static and rotating conditions replicating the typical range of jet Reynolds number (Rej) from 10000 to 40000 and Rotation number (Roj) up to 0.05, for three crossflow cases representative of the working condition that can be found at blade tip, midspan and hub, respectively. Experimental results in terms of flow field measurements on several internal planes and heat transfer coefficient on the LE internal surface have been performed on two analogous experimental campaigns at University of Udine and University of Florence respectively. Hybrid RANS-LES models were used for the simulations, such as Scale Adaptive Simulation (SAS) and Detached Eddy Simulation (DES), given their ability to resolve the complex flow field associated with jet impingement. Numerical flow field results are reported in terms of both jet velocity profiles and 2D vector plots on symmetry and transversal internal planes, while the heat transfer coefficient distributions are presented as detailed 2D maps together with radial and tangential averaged Nusselt number profiles. A fairly good agreement with experimental measurements is observed, which represent a validation of the adopted computational model. As a consequence, the computed aerodynamic and thermal fields also allow an in-depth interpretation of the experimental results.


Author(s):  
Bita Soltan Mohammad Lou ◽  
Mohammad Pourgol-Mohammad ◽  
Mojtaba Yazdani

Gas turbines are the most important components in thermal power plants, and these components such as turbine has been studied carefully. Gas turbine components operate predominantly under elevated temperature and high stress, and consequently gradual deformation becomes temporally inevitable. In turbine blades, creep is common failure mechanism, and it is an important factor for design assessment. The gas turbine blade is a component operating at high elevated temperatures, requiring a cooling systems to reduce the temperature. Common power enhancement approach is to spray water into compressor, and it is how humidity becomes an important factor in creep failure mechanism. The humidity variability results in temperature level change during the turbine operation, potentially affecting the blades creep life. In this paper, first different creep life prediction models were classified, and then a new model is proposed for creep life considering humidity based on Arrhenius equation. In our study, failure criterion is rupture. As a case study, the creep life of Nimonic-90 alloy turbine blade was predicted using proposed method and compared with FEA results which collected by literature surveys. Proposed model is capable of predicting creep life with only knowing dry temperature (WAR = 0), and there is no need to measure blade temperature variation during operation. The influence of humidity (%WAR) were studied on turbine blades creep life, and results show that creep life of turbine blade increase with increasing humidity percentage.


Author(s):  
Nenad Jelisavcic ◽  
Thomas J. Martin ◽  
Ramon J. Moral ◽  
Debasis Sahoo ◽  
George S. Dulikravich ◽  
...  

A one-dimensional thermo-fluid flow network analysis program COOLNET was developed to predict coolant flow rates, total coolant pressures, bulk coolant total temperatures, and internal heat transfer coefficient distributions, inside internally cooled objects. The coolant passages were allowed to be an arbitrary network of one-dimensional fluid elements or tubes. Geometric parameters of each passage were optimized using a hybrid multi-objective optimization algorithm. For the chosen Pratt & Whitney gas turbine the cross-sectional areas, hydraulic diameters, ribs’ heights and angles in each passage were optimized in order to minimize coolant flow rate, coolant total pressure loss, and total heat removed by coolant from the system. Validation of the hybrid multi-objective optimizer was performed with various test functions. Also, validation of the COOLNET was done with existing Pratt & Whitney gas turbine blade. Program OBJ was written to connect hybrid multi-objective optimizer and COOLNET. Optimization process was visualized using Tecplot (commercial software). Program PLOT was written to write input file for Tecplot, purpose of PLOT was to visualize initial and optimized results. Analysis for the best optimal result is given. The resulting COOLNET analysis provided coolant flow rates, total and static pressures and temperatures, and the heat transfer coefficient of each fluid element. The COOLNET analysis algorithm would typically converge in 50 iterations requiring about 5 seconds of CPU time on a 3.0 GHz processor. Results demonstrated that in case of an internally cooled gas turbine blade an improvement in overall performance is possible. A typical design optimization required between 500-1,000 iterations with a population of 30 designs. Thus, total number of configurations analyzed was approximately 15,000-30,000.


Sign in / Sign up

Export Citation Format

Share Document