Numerical Study on the Effect of Jet Slot Height on Flow and Heat Transfer of Swirl Cooling in Leading Edge Model for Gas Turbine Blade

Author(s):  
Zhao Liu ◽  
Jun Li ◽  
Zhenping Feng

In this paper a numerical simulation is conducted to predict the swirl cooling performance of an internal leading edge cooling passage model for gas turbine blade. The Shear-Stress Transport (SST) κ-ω model is adopted for the simulation as this model was found as the best one based on authors’ previous work. Two rectangular section inlets that cause flow to impinge tangentially on the internal surface of the circular cooling passage are arranged to investigate the swirl cooling performance and its effectiveness. The effects of the Reynolds numbers, the ratio of swirl chamber radius to jet slot height with constant ratio of swirl chamber radius to jet nozzle length, and the ratio of swirl chamber radius to jet slot height while jet nozzle area is constant on the local and average flow and heat transfer characteristics for swirl cooling on cylindrical pipe are studied. The results indicate that the position of the swirl flow center is changing along the axial of the swirl chamber, and the swirl flow center of one constant axial section is not uniform as well in different ratios of swirl chamber radius to jet slot height. And larger ratio of swirl chamber radius to jet slot height and larger Reynolds number are desirable to improve the performance of swirl cooling on the turbine leading edge, though the pressure loss of the swirl chamber will increase.

Author(s):  
Kazuto Kakio ◽  
Y. Kawata

Recently, the number of gas turbine combined cycle plants is rapidly increasing in substitution of nuclear power plants. The turbine inlet temperature (TIT) is being constantly increased in order to achieve higher efficiency. Therefore, the improvement of the cooling technology for high temperature gas turbine blades is one of the most important issue to be solved. In a gas turbine, the main flow impinging at the leading edge of the turbine blade generates a so called horseshoe vortex by the interaction of its boundary layer and generated pressure gradient at the leading edge. The pressure surface leg of this horseshoe vortex crosses the passage and reaches the blade suction surface, driven by the pressure gradient existing between two consecutive blades. In addition, this pressure gradient generates a crossflow along the endwall. This all results into a very complex flow field in proximity of the endwall. For this reason, burnouts tend to occur at a specific position in the vicinity of the leading edge. In this research, a methodology to cool the endwall of the turbine blade by means of film cooling jets from the blade surface is proposed. The cooling performance and heat transfer coefficient distribution is investigated using the transient thermography method. CFD analysis is also conducted to know the phenomena occurring at the end wall and calculate the heat transfer distribution.


Author(s):  
Jose Martinez Lucci ◽  
R. S. Amano ◽  
Krishna S. Guntur

It has been a common practice that serpentine cooling passages are used in gas turbine blade to enhance the cooling performance. Insufficient cooled blades are subject to oxidation, to cause creep rupture, and even to cause melting of the material. To control and improve temperature of the blade, we have to have a better understanding of flow behavior and heat transfer inside strongly curved U-bends. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. Previous studies have shown that the flow and heat transfer features through curved bends, even with moderate curvature, cannot be accurately simulated. It is the conventional belief and practice that the usage of a proper turbulence model and a reliable numerical method for achieving accurate computations. The three-dimensional turbulent flows and heat transfer inside a sharp U-bend are numerically studied by using a non-linear low-Reynolds number (low-Re) k-ω model in which the cubic terms are included to represent the effects of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. The finite volume difference method incorporated with the higher-order bounded interpolation scheme has been employed in the present study. For the purpose of comparison, the predictions with the linear low-Reynolds number k-ω model were also performed. The success of the present prediction indicates that the model can be applied to the flow and heat transfer through a coolant passage in an actual gas turbine blade. It is shown that the present non-linear model produces satisfactory predictions of the flow development inside the sharp U-bend comparing with linear Launder-Sharma model. In the present study, three turbulence models are used to predict Nysselt number distribution as well.


Author(s):  
Krishna S. Guntur ◽  
Jose Martinez Lucci ◽  
R. S. Amano

It has been a common practice that serpentine cooling passages are used in gas turbine blade to enhance the cooling performance. Insufficient cooled blades are subject to oxidation, to cause creep rupture, and even to cause melting of the material. To control and improve temperature of blade, we have to have a better understanding of flow behavior and heat transfer inside strongly curved U-bends. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. Previous studies have shown that the flow and heat transfer features through curved bends, even with moderate curvature, cannot be accurately simulated. It is the conventional belief and practice that the usage of a proper turbulence model and a reliable numerical method for achieving accurate computations. The three-dimensional turbulent flows and heat transfer inside a sharp U-bend are numerically studied by using a non-linear low-Reynolds number (low-Re) k-ω model in which the cubic terms are included to represent the effects of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. The finite volume difference method incorporated with the higher-order bounded interpolation scheme has been employed in the present study. For the purpose of comparison, the predictions with the linear low-Reynolds number k-ω model were also performed. The success of the present prediction indicates that the model can be applied to the flow and heat transfer through a coolant passage in an actual gas turbine blade.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
B. Glezer

Heat transfer and fluid mechanics results are given for a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. The Reynolds numbers investigated, based on inlet duct characteristics, include values which are the same as in the application (18000–19400). The ratio of absolute air temperature between the inlet and wall of the swirl chamber ranges from 0.62 to 0.86 for the heat transfer measurements. Spatial variations of surface Nusselt numbers along swirl chamber surfaces are measured using infrared thermography in conjunction with thermocouples, energy balances, digital image processing, and in situ calibration procedures. The structure and streamwise development of arrays of Görtler vortex pairs, which develop along concave surfaces, are apparent from flow visualizations. Overall swirl chamber structure is also described from time-averaged surveys of the circumferential component of velocity, total pressure, static pressure, and the circumferential component of vorticity. Important variations of surface Nusselt numbers and time-averaged flow characteristics are present due to arrays of Görtler vortex pairs, especially near each of the two inlets, where Nusselt numbers are highest. Nusselt numbers then decrease and become more spatially uniform along the interior surface of the chamber as the flows advect away from each inlet.


Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


Sign in / Sign up

Export Citation Format

Share Document