Impact of Fuel Composition on Blow Off and Flashback in Swirl Stabilized Lean Premixed Combustion

Author(s):  
Amin Akbari ◽  
Vincent McDonell ◽  
Scott Samuelsen

Co firing of natural gas with renewable fuels such as hydrogen can reduce greenhouse gas emissions, and meet other sustainability considerations. At the same time, adding hydrogen to natural gas alters combustion properties, such as burning speeds, heating values, flammability limits, and chemical characteristics. It is important to identify how combustion stability relates to fuel mixture composition in industrial gas turbines and burners and correlate such behavior to fuel properties or operating conditions. Ultimately, it is desired to predict and prevent operability issues when designing a fuel flexible gas turbine combustor. Fuel interchangeability is used to describe the ability of a substitute fuel composition to replace a baseline fuel without significantly altering performance and operation. Any substitute fuel, while maintaining the same heating load as the baseline fuel, must also provide stable combustion with low pollutant emissions. Interchangeability indices try to predict the impact of fuel composition on lean blowoff and flashback. Correlations for operability limits have been reported, though results are more consistent for blowoff compared to flashback. Yet, even for blowoff, some disagreement regarding fuel composition effects are evident. In the present work, promising correlations and parameters for lean blow off and flashback in a swirl stabilized lean premixed combustor are evaluated. Measurements are conducted for fuel compositions ranging from pure natural gas to pure hydrogen under different levels of preheat and air flow rates. The results are used to evaluate the ability of existing approaches to predict blowoff and flashback. The results show that, while a Damköhler number approach for blowoff is promising, important considerations are required in applying the method. For flashback, the quench constant parameter suggested for combustion induced vortex breakdown was applied and found to have limited success for predicting flashback in the present configuration.

Author(s):  
Rainer Kurz ◽  
Matt Lubomirsky ◽  
Francis Bainier

Abstract The increased use of renewable energy has made the need to store electricity a central requirement. One of the concepts to address this need is to produce hydrogen from surplus electricity, and to use the existing natural gas pipeline system to transport the hydrogen. Generally, the hydrogen content in the pipeline flow would be below 20%, thus avoiding the problems of transporting and burning pure hydrogen. The natural gas – hydrogen mixtures have to be considered both from a gas transport and a gas storage perspective. In this study, the impact of various levels of hydrogen in a pipeline system are simulated. The pipeline hydraulic simulation will provide the necessary operating conditions for the gas compressors, and the gas turbines that drive these compressors. The result of the study addresses the impact on transportation efficiency in terms of energy consumption and the emission of green house gases. Further, necessary concepts in the capability to store gas to better balance supply and demand are discussed.


Author(s):  
Tim Lieuwen ◽  
Vince McDonell ◽  
Eric Petersen ◽  
Domenic Santavicca

This paper addresses the impact of fuel composition on the operability of lean premixed gas turbine combustors. This is an issue of current importance due to variability in the composition of natural gas fuel supplies and interest in the use of syngas fuels. Of particular concern is the effect of fuel composition on combustor blowout, flashback, dynamic stability, and autoignition. This paper reviews available results and current understanding of the effects of fuel composition on the operability of lean premixed combustors. It summarizes the underlying processes that must be considered when evaluating how a given combustor’s operability will be affected as fuel composition is varied.


Author(s):  
Rajiv Mongia ◽  
Robert Dibble ◽  
Jeff Lovett

Lean premixed combustion has emerged as a method of achieving low pollutant emissions from gas turbines. A common problem of lean premixed combustion is combustion instability. As conditions inside lean premixed combustors approach the lean flammability limit, large pressure variations are encountered. As a consequence, certain desirable gas turbine operating regimes are not approachable. In minimizing these regimes, combustor designers must rely upon trial and error because combustion instabilities are not well understood (and thus difficult to model). When they occur, pressure oscillations in the combustor can induce fluctuations in fuel mole fraction that can augment the pressure oscillations (undesirable) or dampen the pressure oscillations (desirable). In this paper, we demonstrate a method for measuring the fuel mole fraction oscillations which occur in the premixing section during combustion instabilities produced in the combustor that is downstream of the premixer. The fuel mole fraction in the premixer is measured with kHz resolution by the absorption of light from a 3.39 μm He-Ne laser. A sudden expansion combustor is constructed to demonstrate this fuel mole fraction measurement technique. Under several operating conditions, we measure significant fuel mole fraction fluctuations that are caused by pressure oscillations in the combustion chamber. Since the fuel mole fraction is sampled continuously, a power spectrum is easily generated. The fuel mole fraction power spectrum clearly indicates fuel mole fraction fluctuation frequencies are the same as the pressure fluctuation frequencies under some operating conditions.


Author(s):  
Candy Hernandez ◽  
Vincent McDonell

Abstract Lean-premixed (LPM) gas turbines have been developed for stationary power generation in efforts to reduce emissions due to strict air quality standards. Lean-premixed operation is beneficial as it reduces combustor temperatures, thus decreasing NOx formation and unburned hydrocarbons. However, tradeoffs occur between system performance and turbine emissions. Efforts to minimize tradeoffs between stability and emissions include the addition of hydrogen to natural gas, a common fuel used in stationary gas turbines. The addition of hydrogen is promising for both increasing combustor stability and further reducing emissions because of its wide flammability limits allowing for lower temperature operation, and lack of carbon molecules. Other efforts to increase gas turbine stability include the usage of a non-lean pilot flame to assist in stabilizing the main flame. By varying fuel composition for both the main and piloted flows of a gas turbine combustor, the effect of hydrogen addition on performance and emissions can be systematically evaluated. In the present work, computational fluid dynamics (CFD) and chemical reactor networks (CRN) are created to evaluate stability (LBO) and emissions of a gas turbine combustor by utilizing fuel and flow rate conditions from former hydrogen and natural gas experimental results. With CFD and CRN analysis, the optimization of parameters between fuel composition and main/pilot flow splits can provide feedback for minimizing pollutants while increasing stability limits. The results from both the gas turbine model and former experimental results can guide future gas turbine operation and design.


Author(s):  
Daniel Sequera ◽  
Ajay K. Agrawal

Lean Premixed Combustion (LPM) is a widely used approach to effectively reduce pollutant emissions in advanced gas turbines. Most LPM combustion systems employ the swirling flow with a bluff body at the center to stabilize the flame. The flow recirculation region established downstream of the bluff-body brings combustion products in contact with fresh reactants to sustain the reactions. However, such systems are prone to combustion oscillations and flame flashback, especially if high hydrogen containing fuels are used. Low-Swirl Injector (LSI) is an innovative approach, whereby a freely propagating LPM flame is stabilized in a diverging flow field surrounded by a weakly-swirling flow. The LSI is devoid of the flow recirculation region in the reaction zone. In the present study, emissions measurements are reported for a LSI operated on mixtures of methane (CH4), hydrogen (H2), and carbon monoxide (CO) to simulate H2 synthetic gas produced by coal gasification. For a fixed adiabatic flame temperature and air flow rate, CH4 content of the fuel in atmospheric pressure experiments is varied from 100% to 50% (by volume) with the remainder of the fuel containing equal amounts of CO and H2. For each test case, the CO and nitric oxide (NOx) emissions are measured axially at the combustor center and radially at several axial locations. Results show that the LSI provides stable flame for a range of operating conditions and fuel mixtures. The emissions are relatively insensitive to the fuel composition within the operational range of the present experiments.


2021 ◽  
Vol 11 (13) ◽  
pp. 6035
Author(s):  
Luigi Teodosio ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Fabio Bozza ◽  
Gerardo Valentino

Combustion stability, engine efficiency and emissions in a multi-cylinder spark-ignition internal combustion engines can be improved through the advanced control and optimization of individual cylinder operation. In this work, experimental and numerical analyses were carried out on a twin-cylinder turbocharged port fuel injection (PFI) spark-ignition engine to evaluate the influence of cylinder-by-cylinder variation on performance and pollutant emissions. In a first stage, experimental tests are performed on the engine at different speed/load points and exhaust gas recirculation (EGR) rates, covering operating conditions typical of Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Measurements highlighted relevant differences in combustion evolution between cylinders, mainly due to non-uniform effective in-cylinder air/fuel ratio. Experimental data are utilized to validate a one-dimensional (1D) engine model, enhanced with user-defined sub-models of turbulence, combustion, heat transfer and noxious emissions. The model shows a satisfactory accuracy in reproducing the combustion evolution in each cylinder and the temperature of exhaust gases at turbine inlet. The pollutant species (HC, CO and NOx) predicted by the model show a good agreement with the ones measured at engine exhaust. Furthermore, the impact of cylinder-by-cylinder variation on gaseous emissions is also satisfactorily reproduced. The novel contribution of present work mainly consists in the extended numerical/experimental analysis on the effects of cylinder-by-cylinder variation on performance and emissions of spark-ignition engines. The proposed numerical methodology represents a valuable tool to support the engine design and calibration, with the aim to improve both performance and emissions.


Author(s):  
Philippe Versailles ◽  
Wajid Ali Chishty ◽  
Huu Duc Vo

In recent years, lean-premixed (LP) combustors have been widely studied due to their potential to reduce NOx emissions in comparison to diffusion type combustors. However, the fact that the fuels and oxidizers are mixed upstream of the combustion zone makes LP type of combustors a candidate for upstream flame propagation (i.e., flashback) in the premixer that is typically not designed to sustain high temperatures. Moreover, there has been a recent demand for fuel-flexible gas turbines that can operate on hydrogen-enriched fuels like Syngas. Combustors originally designed for slower kinetics fuels like natural gas can potentially encounter flashback if operated with faster burning fuels like those containing hydrogen as a constituent. There exists a clear need in fuel-flexible lean-premixed combustors to control flashback that will not only prevent costly component damage but will also enhance the operability margin of engines. A successful attempt has been made to control flashback in an atmospheric LP combustor, burning natural gas-air mixtures, via the application of Dielectric Barrier Discharge (DBD). A low-power DBD actuator was designed, fabricated and integrated into a premixer made out of quartz. The actuator was tuned to produce a low magnitude ionic wind with an intention to modify the velocity profile in the premixer. Flashback conditions were created by decreasing the air flow rate while keeping the fuel flow rate constant. Within this experimental setup, flashback happened in the core flow along the axis of the cylindrical premixer. Results show that the utilization of the DBD delays the occurrence of flashback to higher equivalence ratios. Improvements as high as about 5% of the flashback limit have been obtained without compromising the blowout limit. It is anticipated that this novel application of DBD will lead to future demonstrations of the concept under realistic gas turbine operating conditions.


Author(s):  
Serena Romano ◽  
Matteo Cerutti ◽  
Giovanni Riccio ◽  
Antonio Andreini ◽  
Christian Romano

Abstract Development of lean-premixed combustion technology with low emissions and stable operation in an increasingly wide range of operating conditions requires a deep understanding of the mechanisms that affect the combustion performance or even the operability of the entire gas turbine. Due to the relative wide range of natural gas composition supplies and the increased demand from Oil&Gas customers to burn unprocessed gas as well as LNG with notable higher hydrocarbons (C2+) content; the impact on gas turbine operability and combustion related aspects has been matter of several studies. In this paper, results of experimental test campaign of an annular combustor for heavy-duty gas turbine are presented with focus on the effect of fuel composition on both emissions and flame stability. Test campaign involved two different facilities, a full annular combustor rig and a full-scale prototype engine fed with different fuel mixtures of natural gas with small to moderate C2H6 content. Emissions trends and blowout for several operating conditions and burner configurations have been analyzed. Modifications to the burner geometry and fuel injection optimization have shown to be able to reach a good trade-off while keeping low NOx emissions in stable operating conditions for varying fuel composition.


Author(s):  
Siddhartha Gadiraju ◽  
Suhyeon Park ◽  
Prashant Singh ◽  
Jaideep Pandit ◽  
Srinath V. Ekkad ◽  
...  

This work is motivated by an interest in understanding the fuel interchangeability of a fuel nozzle to operate under extreme lean operating conditions. A lean premixed, swirl-stabilized fuel nozzle designed with central pilot hub was used to test various fuel blends for combustion characteristics. Current gas turbine combustion technology primarily focuses on burning natural gas for industrial systems. However, interest in utilizing additional options due to environmental regulations as well as concerns about energy security have motivated interest in using fuel gases that have blends of Methane, Propane, H2, CO, CO2, and N2. For example, fuel blends of 35%/60% to 55%/35% of CH4/CO2 are typically seen in Landfill gases. Syngas fuels are typically composed primarily of H2, CO, and N2. CH4/N2 fuel blend mixtures can be derived from biomass gasification. Stringent emission requirements for gas turbines stipulate operating at extreme lean conditions, which can reduce NOx emissions. However, lean operating conditions pose the problem of potential blowout resulting in loss of performance and downtime. Therefore, it is important to understand the Lean Blowout (LBO) limits and involved mechanisms that lead to a blowout. While a significant amount of research has been performed to understand lean blowout limits and mechanisms for natural gas, research on LBO limits and mechanisms for fuel blends has only been concentrated on fuel blends of CH4 and H2 such as syngas. This paper studies the lean blowout limits with fuel blends CH4-C3H8, CH4-CO2, and CH4-N2 and also their effect on the stability limits as the pilot fuel percentage was varied. Experimental results demonstrate that the addition of propane, nitrogen and carbon dioxide has minimal effect on the adiabatic flame temperature when the flame becomes unstable under lean operating conditions. On the other hand, the addition of diluent gas showed a potential blowout at higher adiabatic temperatures.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Serena Romano ◽  
Matteo Cerutti ◽  
Giovanni Riccio ◽  
Antonio Andreini ◽  
Christian Romano

Abstract Development of lean-premixed combustion technology with low emissions and stable operation in an increasingly wide range of operating conditions requires a deep understanding of the mechanisms that affect the combustion performance or even the operability of the entire gas turbine. Due to the relative wide range of natural gas composition supplies and the increased demand from Oil&Gas customers to burn unprocessed gas as well as liquified natural gas (LNG) with notable higher hydrocarbons (C2+) content, the impact on gas turbine operability and combustion related aspects has been matter of several studies. In this paper, results of experimental test campaign of an annular combustor for heavy-duty gas turbine are presented with focus on the effect of fuel composition on both emissions and flame stability. Test campaign involved two different facilities, a full annular combustor rig and a full-scale prototype engine fed with different fuel mixtures of natural gas with small to moderate C2H6 content. Emission trends and blowout for several operating conditions and burner configurations have been analyzed. Modifications to the burner geometry and fuel injection optimization have shown to be able to reach a good tradeoff while keeping low NOx emissions in stable operating conditions for varying fuel composition.


Sign in / Sign up

Export Citation Format

Share Document