Fuel Interchangeability Effects on the Lean Blowout for a Lean Premixed Swirl Stabilized Fuel Nozzle

Author(s):  
Siddhartha Gadiraju ◽  
Suhyeon Park ◽  
Prashant Singh ◽  
Jaideep Pandit ◽  
Srinath V. Ekkad ◽  
...  

This work is motivated by an interest in understanding the fuel interchangeability of a fuel nozzle to operate under extreme lean operating conditions. A lean premixed, swirl-stabilized fuel nozzle designed with central pilot hub was used to test various fuel blends for combustion characteristics. Current gas turbine combustion technology primarily focuses on burning natural gas for industrial systems. However, interest in utilizing additional options due to environmental regulations as well as concerns about energy security have motivated interest in using fuel gases that have blends of Methane, Propane, H2, CO, CO2, and N2. For example, fuel blends of 35%/60% to 55%/35% of CH4/CO2 are typically seen in Landfill gases. Syngas fuels are typically composed primarily of H2, CO, and N2. CH4/N2 fuel blend mixtures can be derived from biomass gasification. Stringent emission requirements for gas turbines stipulate operating at extreme lean conditions, which can reduce NOx emissions. However, lean operating conditions pose the problem of potential blowout resulting in loss of performance and downtime. Therefore, it is important to understand the Lean Blowout (LBO) limits and involved mechanisms that lead to a blowout. While a significant amount of research has been performed to understand lean blowout limits and mechanisms for natural gas, research on LBO limits and mechanisms for fuel blends has only been concentrated on fuel blends of CH4 and H2 such as syngas. This paper studies the lean blowout limits with fuel blends CH4-C3H8, CH4-CO2, and CH4-N2 and also their effect on the stability limits as the pilot fuel percentage was varied. Experimental results demonstrate that the addition of propane, nitrogen and carbon dioxide has minimal effect on the adiabatic flame temperature when the flame becomes unstable under lean operating conditions. On the other hand, the addition of diluent gas showed a potential blowout at higher adiabatic temperatures.


Author(s):  
Amin Akbari ◽  
Vincent McDonell ◽  
Scott Samuelsen

Co firing of natural gas with renewable fuels such as hydrogen can reduce greenhouse gas emissions, and meet other sustainability considerations. At the same time, adding hydrogen to natural gas alters combustion properties, such as burning speeds, heating values, flammability limits, and chemical characteristics. It is important to identify how combustion stability relates to fuel mixture composition in industrial gas turbines and burners and correlate such behavior to fuel properties or operating conditions. Ultimately, it is desired to predict and prevent operability issues when designing a fuel flexible gas turbine combustor. Fuel interchangeability is used to describe the ability of a substitute fuel composition to replace a baseline fuel without significantly altering performance and operation. Any substitute fuel, while maintaining the same heating load as the baseline fuel, must also provide stable combustion with low pollutant emissions. Interchangeability indices try to predict the impact of fuel composition on lean blowoff and flashback. Correlations for operability limits have been reported, though results are more consistent for blowoff compared to flashback. Yet, even for blowoff, some disagreement regarding fuel composition effects are evident. In the present work, promising correlations and parameters for lean blow off and flashback in a swirl stabilized lean premixed combustor are evaluated. Measurements are conducted for fuel compositions ranging from pure natural gas to pure hydrogen under different levels of preheat and air flow rates. The results are used to evaluate the ability of existing approaches to predict blowoff and flashback. The results show that, while a Damköhler number approach for blowoff is promising, important considerations are required in applying the method. For flashback, the quench constant parameter suggested for combustion induced vortex breakdown was applied and found to have limited success for predicting flashback in the present configuration.



Author(s):  
Philippe Versailles ◽  
Wajid Ali Chishty ◽  
Huu Duc Vo

In recent years, lean-premixed (LP) combustors have been widely studied due to their potential to reduce NOx emissions in comparison to diffusion type combustors. However, the fact that the fuels and oxidizers are mixed upstream of the combustion zone makes LP type of combustors a candidate for upstream flame propagation (i.e., flashback) in the premixer that is typically not designed to sustain high temperatures. Moreover, there has been a recent demand for fuel-flexible gas turbines that can operate on hydrogen-enriched fuels like Syngas. Combustors originally designed for slower kinetics fuels like natural gas can potentially encounter flashback if operated with faster burning fuels like those containing hydrogen as a constituent. There exists a clear need in fuel-flexible lean-premixed combustors to control flashback that will not only prevent costly component damage but will also enhance the operability margin of engines. A successful attempt has been made to control flashback in an atmospheric LP combustor, burning natural gas-air mixtures, via the application of Dielectric Barrier Discharge (DBD). A low-power DBD actuator was designed, fabricated and integrated into a premixer made out of quartz. The actuator was tuned to produce a low magnitude ionic wind with an intention to modify the velocity profile in the premixer. Flashback conditions were created by decreasing the air flow rate while keeping the fuel flow rate constant. Within this experimental setup, flashback happened in the core flow along the axis of the cylindrical premixer. Results show that the utilization of the DBD delays the occurrence of flashback to higher equivalence ratios. Improvements as high as about 5% of the flashback limit have been obtained without compromising the blowout limit. It is anticipated that this novel application of DBD will lead to future demonstrations of the concept under realistic gas turbine operating conditions.



2016 ◽  
Vol 23 (3) ◽  
pp. 39-49 ◽  
Author(s):  
Nader R. Ammar ◽  
Ahmed I. Farag

Abstract Strong restrictions on emissions from marine power plants will probably be adopted in the near future. One of the measures which can be considered to reduce exhaust gases emissions is the use of alternative fuels. Synthesis gases are considered competitive renewable gaseous fuels which can be used in marine gas turbines for both propulsion and electric power generation on ships. The paper analyses combustion and emission characteristics of syngas fuel in marine gas turbines. Syngas fuel is burned in a gas turbine can combustor. The gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The analysis is performed numerically using the computational fluid dynamics code ANSYS FLUENT. Different operating conditions are considered within the numerical runs. The obtained numerical results are compared with experimental data and satisfactory agreement is obtained. The effect of syngas fuel composition and the swirl number values on temperature contours, and exhaust gas species concentrations are presented in this paper. The results show an increase of peak flame temperature for the syngas compared to natural gas fuel combustion at the same operating conditions while the NO emission becomes lower. In addition, lower CO2 emissions and increased CO emissions at the combustor exit are obtained for the syngas, compared to the natural gas fuel.



Author(s):  
P. Griebel ◽  
E. Boschek ◽  
P. Jansohn

Flame stability is a crucial issue in low NOx combustion systems operating at extremely lean conditions. Hydrogen enrichment seems to be a promising option to extend lean blowout limits of natural gas combustion. This experimental study addresses flame stability enhancement and NOx reduction in turbulent, high-pressure, lean premixed methane/air flames in a generic combustor, capable of a wide range of operating conditions. Lean blowout limits (LBO) and NOx emissions are presented for pressures up to 14 bars, bulk velocities in the range of 32–80 m/s, two different preheating temperatures (673 K, 773 K), and a range of fuel mixtures from pure methane to 20% H2/80% CH4 by volume. The influence of turbulence on LBO limits is discussed, too. In addition to the investigation of perfectly premixed H2-enriched flames, LBO and NOx are also discussed for hydrogen piloting. Experiments have revealed that a mixture of 20% hydrogen and 80% methane, by volume, can typically extend the lean blowout limit by roughly 10% compared to pure methane. The flame temperature at LBO is approximately 60 K lower resulting in the reduction of NOx concentration by ≈ 35% (0.5 → 0.3 ppm/15% O2).



2006 ◽  
Vol 129 (2) ◽  
pp. 404-410 ◽  
Author(s):  
P. Griebel ◽  
E. Boschek ◽  
P. Jansohn

Flame stability is a crucial issue in low NOx combustion systems operating at extremely lean conditions. Hydrogen enrichment seems to be a promising option to extend lean blowout limits (LBO) of natural gas combustion. This experimental study addresses flame stability enhancement and NOx reduction in turbulent, high-pressure, lean premixed methane/air flames in a generic combustor capable of a wide range of operating conditions. Lean blowout limits and NOx emissions are presented for pressures up to 14bar, bulk velocities in the range of 32–80m∕s, two different preheating temperatures (673K, 773K), and a range of fuel mixtures from pure methane to 20% H2∕80%CH4 by volume. The influence of turbulence on LBO limits is also discussed. In addition to the investigation of perfectly premixed H2-enriched flames, LBO and NOx are also discussed for hydrogen piloting. Experiments have revealed that a mixture of 20% hydrogen and 80% methane, by volume, can typically extend the lean blowout limit by ∼10% compared to pure methane. The flame temperature at LBO is ∼60K lower resulting in the reduction of NOx concentration by ≈35%(0.5→0.3ppm∕15%O2).



Author(s):  
P. Birkby ◽  
R. S. Cant ◽  
W. N. Dawes ◽  
A. A. J. Demargne ◽  
P. C. Dhanasekaran ◽  
...  

The introduction of lean premixed combustion technology in industrial gas turbines has led to a number of interesting technical issues. Lean premixed combustors are especially prone to acoustically-coupled combustion oscillations as well as to other problems of flame stability such as flashback. Clearly it is very important to understand the physics that lies behind such behaviour in order to produce robust and comprehensive remedies, and also to underpin the future development of new combustor designs. Simulation of the flow and combustion using Computational Fluid Dynamics (CFD) offers an attractive way forward, provided that the modelling of turbulence and combustion is adequate and that the technique is applicable to real industrial combustor geometries. The paper presents a series of CFD simulations of the Rolls-Royce Trent industrial combustor carried out using the McNEWT unstructured code. The entire combustion chamber geometry is represented including the premixing ducts, the fuel injectors and the discharge nozzle. A modified k-ε model has been used together with an advanced laminar flamelet combustion model that is sensitive to variations in fuel-air mixture stoichiometry. Detailed results have been obtained for the non-reacting flow field, for the mixing of fuel and air and for the combustion process itself at a number of different operating conditions. The study has provided a great deal of useful information on the operation of the combustor and has demonstrated the value of CFD-based combustion analysis in an industrial context.



Author(s):  
Philippe Versailles ◽  
Wajid Ali Chishty ◽  
Huu Duc Vo

In recent years, lean-premixed (LP) combustors have been widely studied due to their potential to reduce NOx emissions in comparison to diffusion type combustors. However, the fact that the fuels and oxidizers are mixed upstream of the combustion zone makes LP type of combustors a candidate for upstream flame propagation (i.e., flashback) in the premixer that is typically not designed to sustain high temperatures. Moreover, there has been a recent demand for fuel-flexible gas turbines that can operate on hydrogen-enriched fuels like Syngas. Combustors originally designed for slower kinetics fuels like natural gas can potentially encounter flashback if operated with faster burning fuels like those containing hydrogen as a constituent. There exists a clear need in fuel-flexible lean-premixed combustors to control flashback that will not only prevent costly component damage but will also enhance the operability margin of engines. A successful attempt has been made to control flashback in an atmospheric LP combustor, burning natural gas-air mixtures, via the application of dielectric barrier discharge (DBD). A low-power DBD actuator was designed, fabricated and integrated into a premixer made out of quartz. The actuator was tuned to produce a low magnitude ionic wind with an intention to modify the velocity profile in the premixer. Flashback conditions were created by decreasing the air flow rate while keeping the fuel flow rate constant. Within this experimental setup, flashback happened in the core flow along the axis of the cylindrical premixer. Results show that the utilization of the DBD delays the occurrence of flashback to higher equivalence ratios. Improvements as high as about 5% of the flashback limit have been obtained without compromising the blowout limit. It is anticipated that this novel application of DBD will lead to future demonstrations of the concept under realistic gas turbine operating conditions.



Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.



Author(s):  
Rajiv Mongia ◽  
Robert Dibble ◽  
Jeff Lovett

Lean premixed combustion has emerged as a method of achieving low pollutant emissions from gas turbines. A common problem of lean premixed combustion is combustion instability. As conditions inside lean premixed combustors approach the lean flammability limit, large pressure variations are encountered. As a consequence, certain desirable gas turbine operating regimes are not approachable. In minimizing these regimes, combustor designers must rely upon trial and error because combustion instabilities are not well understood (and thus difficult to model). When they occur, pressure oscillations in the combustor can induce fluctuations in fuel mole fraction that can augment the pressure oscillations (undesirable) or dampen the pressure oscillations (desirable). In this paper, we demonstrate a method for measuring the fuel mole fraction oscillations which occur in the premixing section during combustion instabilities produced in the combustor that is downstream of the premixer. The fuel mole fraction in the premixer is measured with kHz resolution by the absorption of light from a 3.39 μm He-Ne laser. A sudden expansion combustor is constructed to demonstrate this fuel mole fraction measurement technique. Under several operating conditions, we measure significant fuel mole fraction fluctuations that are caused by pressure oscillations in the combustion chamber. Since the fuel mole fraction is sampled continuously, a power spectrum is easily generated. The fuel mole fraction power spectrum clearly indicates fuel mole fraction fluctuation frequencies are the same as the pressure fluctuation frequencies under some operating conditions.



Author(s):  
Elizaveta Ivanova ◽  
Berthold Noll ◽  
Peter Griebel ◽  
Manfred Aigner ◽  
Khawar Syed

Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T > 1000K, p = 15bar). Based on the results of the experimental study for the same flow configuration and operating conditions two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here the steady-state Reynolds-averaged Navier-Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O’Conaire et al. [1]. As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies.



Sign in / Sign up

Export Citation Format

Share Document