Accuracy of Centrifugal Compressor Stages Performance Prediction by Means of High Fidelity CFD and Validation Using Advanced Aerodynamic Probe

Author(s):  
V. V. N. K. Satish K. ◽  
Emanuele Guidotti ◽  
Dante Tommaso Rubino ◽  
Libero Tapinassi ◽  
Sridhar Prasad

During the design of modern high efficiency, wide operating range centrifugal compressor stages, Computational Fluid Dynamics (CFD) plays an increasing role in the assessment of the performance prediction. Nevertheless experimental data are valuable and necessary to assess the performance of the stages and to better understand the flow features in detail. A big effort is currently being made to increase the fidelity of the numerical models and the probe measurement accuracy during both the design and validation phases of centrifugal compressor stages. This study presents the flow analysis of centrifugal compressor stages using high fidelity computational fluid dynamics with a particular attention to the cavity flow modeling and comparison with experimental data, using an advanced fast response aerodynamic pressure probe. Different flow coefficient centrifugal compressor stages were used for the validation of the numerical models with a particular attention to the effects of cavity flow on the flow phenomena. The computational domain faithfully reproduced the geometry of the stages including secondary flow cavities. The availability of a new in-house automated tool for cavity meshing allowed to accurately resolve leakage flows with a reasonable increase in computational and user time. Time averaged data from CFD analysis were compared with advanced experimental ones coming from the unsteady pressure probe, for both overall performance and detailed two-dimensional maps of the main flow quantities at design and off design conditions. It was found that the increase in computational accuracy with the complete geometry modeling including leakage flows was substantial and the results of the computational model were in good agreement with the experimental data. Moreover the combination of both advanced computational and experimental techniques enabled deeper insights in the flow field features. The comparison showed that only with advanced high fidelity CFD including leakage flows modeling did the numerical predictions meet the requirements for efficiency, head and operating margin, otherwise not achievable with simplified models (CFD without cavities).

Author(s):  
Ernesto Benini ◽  
Giovanni Boscolo ◽  
Andrea Garavello

In spite of the remarkable advances in the field of the Computational Fluid Dynamics, algebraic models built upon empirical loss and deviation correlations are still one of the most reliable and effective tools to predict the performance of gas turbine stages with reasonable accuracy, especially when low-reaction, multi-stage architectures are considered. This paper deals with a comparison among some of the most popular loss correlations used by gas turbine manufacturers; such comparison is performed on a two-stage low-reaction turbine for which detailed experimental data are available. An overall assessment on the validity of loss correlations is carried out to help the designer/analyst using the most accurate model when both on- and off-design are to be carried out.


Author(s):  
Carolina Introini ◽  
Stefano Lorenzi ◽  
Antonio Cammi ◽  
Davide Baroli

In the last decade, the importance of numerical simulations for the analysis of complex engineering systems, such as thermo-fluid dynamics in nuclear reactors, has grown exponentially. In spite of the large experimental databases available for validation of mathematical models, in order to identify the most suitable one for the system under investigation, the inverse integration of such data into the CFD model is nowadays an ongoing challenge. In addition, such integration could tackle the problem of propagation of epistemic uncertainties, both in the numerical model and in the experimental data. In this framework, the data-assimilation method allows for the dynamic incorporation of observations within the computational model. Perhaps the most famous among these methods, due to its simple implementation and yet robust nature, is the Kalman filter. Although this approach has found success in fields such as weather forecast and geoscience, its application in Computational Fluid-Dynamics (CFD) is still in its first stages. In this setting, a new algorithm based on the integration between the segregated approach, which is the most common method adopted by CFD applications for the solution of the incompressible Navier-Stokes equations, and a Kalman filter modified for fluid-dynamics problems, while preserving mass conservation of the solution, has already been developed and tested in a previous work. Whereas such method is able to robustly integrate experimental data within the numerical model, its computational cost increases with model complexity. In particular, in high-fidelity realistic scenarios the error covariance matrix for the model, which represents the uncertainties associated with it, becomes dense, thus affecting the efficiency and computational cost of the method. For this reason, due to the promised reduction of computational requirements recently investigated, which combines model reduction and data-assimilation, in this work a combination of reduced order model and mass-conservative Kalman filter within a segregated approach for CFD analysis is proposed. The novelty lies in the peculiar formulation of the Kalman filter and how to construct a low-dimensional manifold to approximate, with sufficient accuracy, the high fidelity model. With respect to literature, in which the full-order Kalman filter is applied to a reduced model, the reduction is performed directly on the integrated model in order to obtain a reduced-order Kalman filter already optimised for fluid-dynamics applications. In order to verify the capabilities of this approach, this reduced-order algorithm has been tested against the lid-driven cavity test case.


Author(s):  
Emanuele Guidotti ◽  
Lorenzo Toni ◽  
Dante Tommaso Rubino ◽  
Libero Tapinassi ◽  
Giovanni Naldi ◽  
...  

Computational Fluid Dynamics (CFD) is becoming fundamental to predict turbomachinery performance. However, only using advanced numerical models coupled with high fidelity grid generation is possible to reach a very good matching with test data. In this regard, secondary flow modeling plays a critical role in the accuracy of performance prediction for centrifugal compressor stages. This study analyses the effects of cavity models on centrifugal compressor stages performance across the full range of impeller flow coefficients used in common industrial applications. Both bi-dimensional low flow coefficients with splitter and non splitter blades and three-dimensional high flow coefficients stages have been used as test cases to compare the numerical prediction with test data. Furthermore the effects of secondary flows modeling have been assessed when comparing detailed flow features with advanced experimental data both in terms of 1D profiles and 2D maps. The effects of cavity flows modeling is growing, as expected, moving to very low flow coefficients, reaching several points of difference in efficiency calculation with respect to simpler models. Furthermore, the agreement with experimental data is very good both in terms of overall performance and detailed flow features. Finally, the high fidelity CFD is capable to give deep in-sides into the flow evolution inside the machine allowing aero designers to design centrifugal compressor stages with higher performance. It should be remarked here that a good matching of CFD prediction with test data is possible only by using high fidelity models.


Author(s):  
J. E. Sargison ◽  
S. M. Guo ◽  
M. L. G. Oldfield ◽  
G. D. Lock ◽  
A. J. Rawlinson

Performance prediction techniques have been investigated for use as design tools for the novel console, or converging slothole, film cooling geometry. The performance of the console has been the subject of earlier publications that have demonstrated that this new film cooling hole improves both the heat transfer and aerodynamic performance of turbine vane and rotor blade cooling systems. Three prediction techniques are used and compared in this paper: theoretical models, correlations of experimental data, and two-dimensional Computational Fluid Dynamics. Published experimental measurements of adiabatic effectiveness for the console, and other typical cooling holes at low speed conditions and coolant to mainstream momentum flux ratios of 0.5, 1.1 and 1.5 were used in this analysis. The console results were compared with theoretical predictions of adiabatic effectiveness using a slot model, which was found to be an adequate approximation. Experimental performance data measured in a simple, low-speed apparatus was correlated and used to predict the performance of multiple rows of consoles in a nozzle guide vane at engine representative conditions. This was compared with published experimental data for engine representative conditions and it was found that the correlated low-speed data provided an adequate and simple prediction of the performance of the console in an engine representative film cooling design. Two-dimensional Computational Fluid Dynamics is another relatively rapid prediction tool that was used to predict low speed results.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 204
Author(s):  
Kamran Fouladi ◽  
David J. Coughlin

This report presents the development of a fluid-structure interaction model using commercial Computational fluid dynamics software and in-house developed User Defined Function to simulate the motion of a trout Department of Mechanical Engineering, Widener University holding station in a moving water stream. The oscillation model used in this study is based on the observations of trout swimming in a respirometry tank in a laboratory experiment. The numerical simulations showed results that are consistent with laboratory observations of a trout holding station in the tank without obstruction and trout entrained to the side of the cylindrical obstruction. This paper will be helpful in the development of numerical models for the hydrodynamic analysis of bioinspired unmanned underwater vehicle systems.


2004 ◽  
Vol 128 (3) ◽  
pp. 579-584 ◽  
Author(s):  
Vassilios Pachidis ◽  
Pericles Pilidis ◽  
Fabien Talhouarn ◽  
Anestis Kalfas ◽  
Ioannis Templalexis

Background . This study focuses on a simulation strategy that will allow the performance characteristics of an isolated gas turbine engine component, resolved from a detailed, high-fidelity analysis, to be transferred to an engine system analysis carried out at a lower level of resolution. This work will enable component-level, complex physical processes to be captured and analyzed in the context of the whole engine performance, at an affordable computing resource and time. Approach. The technique described in this paper utilizes an object-oriented, zero-dimensional (0D) gas turbine modeling and performance simulation system and a high-fidelity, three-dimensional (3D) computational fluid dynamics (CFD) component model. The work investigates relative changes in the simulated engine performance after coupling the 3D CFD component to the 0D engine analysis system. For the purposes of this preliminary investigation, the high-fidelity component communicates with the lower fidelity cycle via an iterative, semi-manual process for the determination of the correct operating point. This technique has the potential to become fully automated, can be applied to all engine components, and does not involve the generation of a component characteristic map. Results. This paper demonstrates the potentials of the “fully integrated” approach to component zooming by using a 3D CFD intake model of a high bypass ratio turbofan as a case study. The CFD model is based on the geometry of the intake of the CFM56-5B2 engine. The high-fidelity model can fully define the characteristic of the intake at several operating condition and is subsequently used in the 0D cycle analysis to provide a more accurate, physics-based estimate of intake performance (i.e., pressure recovery) and hence, engine performance, replacing the default, empirical values. A detailed comparison between the baseline engine performance (empirical pressure recovery) and the engine performance obtained after using the coupled, high-fidelity component is presented in this paper. The analysis carried out by this study demonstrates relative changes in the simulated engine performance larger than 1%. Conclusions. This investigation proves the value of the simulation strategy followed in this paper and completely justifies (i) the extra computational effort required for a more automatic link between the high-fidelity component and the 0D cycle, and (ii) the extra time and effort that is usually required to create and run a 3D CFD engine component, especially in those cases where more accurate, high-fidelity engine performance simulation is required.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2020 ◽  
Vol 220 ◽  
pp. 01082
Author(s):  
Yuri Kozhukhov ◽  
Serafima Tatchenkova ◽  
Sergey Kartashov ◽  
Vyacheslav Ivanov ◽  
Evgeniy Nikitin

This paper provides the results of the study of a spatial flow in a low-flow stage of a SVD-22 centrifugal compressor of computational fluid dynamics methods using the Ansys CFX 14.0 software package. Low flow stages are used as the last stages of multistage centrifugal compressors. Such multistage compressors are widely used in boosting compressor stations for natural gas, in chemical industries. The flow features in low-flow stages require independent research. This is due to the fact that the developed techniques for designing centrifugal compressor stages are created for medium-flow and high-flow stages and do not apply to low-flow stages. Generally at manufacturing new centrifugal compressors, it is impossible to make a control measurement of the parameters of the working process inside the flow path elements. Computational fluid dynamics methods are widely used to overcome this difficulties. However verification and validation of CFD methods are necessary for accurate modeling of the workflow. All calculations were conducted on one of the SPbPU clusters. Parameters of one cluster node: AMD Opteron 280 2 cores, 8GB RAM. The calculations were conducted using 4 nodes (HP MPI Distributed Parallel startup type) with their full load by parallelizing processes on each node.


Sign in / Sign up

Export Citation Format

Share Document