Finite-Element Modelling of an Experimental Mistuned Bladed Disk and Experimental Validation

Author(s):  
Jean de Cazenove ◽  
Scott Cogan ◽  
Moustapha Mbaye

Integrally bladed rotors dynamic properties are known to be particularly sensitive to small geometric discrepancies due to the machining process or in-service wear. In this context, it is straightforward that setting up accurate numerical models which take into account real mistuning patterns is a key issue in the prediction of forced response amplitudes under operating conditions. The present study focuses on an experimental bladed disk. Due to strong inter-blade coupling, the geometric mistuning is supposed to result in severe mode localization for the studied bladed disk, thus emphasizing the need of a realistic, predictive finite-element model. This paper describes the procedure which leads to the development and validation of a high-fidelity FE model for a realistic bladed disk, based on coordinate measurements by means of fringe projection. After giving an overview of the coordinate measurement and model building for the studied bladed disk, the comparison of cantilevered-blade and full disk calculated eigenfrequencies to individual blade and full disk in quasi-vacuum measurements are presented.

Author(s):  
David Hemberger ◽  
Dietmar Filsinger ◽  
Hans-Jörg Bauer

Next to excitation forces and the dynamic properties of mistuned structures the damping behavior is a key feature to evaluate the dynamic turbine blade response and thus the HCF life of a bladed disk (blisk). Just as the determination of the mistuning properties and the assessment of the vibration excitation, the evaluation of damping is also subject to uncertainty especially considering the wide operating range of a small radial turbine of a turbocharger. Since the total damping is composed of material damping, structural damping and aerodynamic damping, which are affected by parameters, like the eigenform of the vibration, the magnitude of the vibration amplitude and aerodynamic properties, the total damping can be strongly dependent on the operating conditions. The study at hand provides results from investigations that allow estimating the contribution of aerodynamic damping on the total damping. Experimental and numerical analysis of radial turbines from turbochargers for vehicular engines with variable turbine inlet vanes were performed. Measurements under different environmental conditions such as at rest and during operation, as well as unsteady CFD calculations and, coupled flow and structural calculations were carried out. A change in total damping could be found depending on the density of the surrounding gas by vibration measurements in operation on the hot gas test bench. But it was also shown that the total damping is decisively influenced by the mistuning of the structure. On one side the structural damping is varied by the variation in mistuned blade vibration amplitudes and otherwise the aerodynamic damping is influenced by the different inter blade phase angles (IBPA ) due to the mistuning, which is a symptom of geometric differences and material inhomogeneity in the wheels. Finally, the estimated total damping values were utilized in forced response calculations using a mistuned FE-model of a real turbine and excitation forces from unsteady CFD calculation. The magnitudes of the measured vibration amplitudes were compared with results from numerical analysis to validate the numerical model with focus on the investigation about the total damping. The deviation between the results was ±10% for different eigenforms and excitation orders.


Author(s):  
Chaoping Zang ◽  
Yuanqiu Tan ◽  
E. P. Petrov

A new method is developed for the forced response analysis of mistuned bladed disks manufactured from anisotropic materials and mistuned by different orientations of material anisotropy axes. The method uses (i) sector finite element (FE) models of anisotropic bladed disks and (ii) FE models of single blades and allows the calculation of displacements and stresses in a mistuned assembly. A high-fidelity reduction approach is proposed which ensures high-accuracy modeling by introducing an enhanced reduction basis. The reduction basis includes the modal properties of specially selected blades and bladed disks. The technique for the choice of the reduction basis has been developed, which provides the required accuracy while keeping the computation expense acceptable. An approach for effective modeling of anisotropy-mistuned bladed disk without a need to create a FE model for each mistuning pattern is developed. The approach is aimed at fast statistical analysis based on Monte Carlo simulations. All components of the methodology for anisotropy-mistuned bladed disks are demonstrated on the analysis of models of practical bladed disks. Effects of anisotropy mistuning on forced response levels are explored.


Author(s):  
Yongliang Duan ◽  
Chaoping Zang ◽  
E. P. Petrov

This paper is focused on the analysis of effects of mistuning on the forced response of gas turbine engine bladed disks vibrating in the frequency ranges corresponding to higher modes. For high modes considered here, the blade aerofoils are deformed during vibrations and the blade mode shapes differ significantly from beam mode shapes. A model reduction technique is developed for the computationally efficient and accurate analysis of forced response for bladed disks vibrating in high-frequency ranges. The high-fidelity finite element (FE) model of a tuned bladed disk sector is used to provide primary information about dynamic properties of a bladed disk, and the blade mistuning is modeled by specially defined mistuning matrices. The forced response displacement and stress amplitude levels are studied. The effects of different types of mistuning are examined, and the existence of high amplifications of mistuned forced response levels is shown for high-mode vibrations: in some cases, the resonance peak response of a tuned structure can be lower than out-of-resonance amplitudes of its mistuned counterpart.


Author(s):  
Muhammed Muaz ◽  
Sanan H Khan

A slot cutting operation is studied in this paper using a rotating/translating flat end milling insert. Milling operation usually comprises up-milling and down-milling processes. These two types of processes have different behaviors with opposite trends of the forces thus making the operation complex in nature. A detailed Finite Element (FE) model is proposed in this paper for the failure analysis of milling operation by incorporating damage initiation criterion followed by damage evolution mechanism. The FE model was validated with experimental results and good correlations were found between the two. The failure criteria field variable (JCCRT) was traced on the workpiece to observe the amount and rate of cutting during the machining process. It was found that the model was able to predict different failure energies that are dissipated during the machining operation which are finally shown to be balanced. It was also shown that the variation of these energies with the tool rotation angle was following the actual physical phenomenon that occurred during the cutting operation. Among all the energies, plastic dissipation energy was found to be the major contributor to the total energy of the system. A progressive failure analysis was further carried out to observe the nature of failure and the variation of stress components and temperature occurring during the machining process. The model proposed in this study will be useful for designers and engineers to plan their troubleshooting in various applications involving on-spot machining.


2021 ◽  
Author(s):  
Rakshith Naik ◽  
Yetzirah Urthaler ◽  
Scot McNeill ◽  
Rafik Boubenider

Abstract Certain subsea jumper design features coupled with operating conditions can lead to Flow Induced Vibration (FIV) of subsea jumpers. Excessive FIV can result in accumulation of allowable fatigue damage prior to the end of jumper service life. For this reason, an extensive FIV management program was instated for a large development in the Gulf of Mexico (GOM) where FIV had been observed. The program consisted of in-situ measurement, modeling and analysis. Selected well and flowline jumpers were outfitted with subsea instrumentation for dedicated vibration testing. Finite Element (FE) models were developed for each jumper and refined to match the dynamic properties extracted from the measured data. Fatigue analysis was then carried out using the refined FE model and measured response data. If warranted by the analysis results, action was taken to mitigate the deleterious effects of FIV. Details on modeling and data analysis were published in [5]. Herein, we focus on the overall findings and lessons learned over the duration of the program. The following topics from the program are discussed in detail: 1. In-situ vibration measurement 2. Overall vibration trends with flow rate and lack of correlation of FIV to flow intensity (rho-v-squared); 3. Vibration and fatigue performance of flowline jumpers vs. well jumpers 4. Fatigue analysis conservatism Reliance on screening calculations or predictive FE analysis could lead to overly conservative operational limits or a high degree of fatigue life uncertainty in conditions vulnerable to FIV. It is proposed that in-situ vibration measurements followed by analysis of the measured data in alignment with operating conditions is the best practice to obtain a realistic understanding of subsea jumper integrity to ensure safe and reliable operation of the subsea system. The findings from the FIV management program provide valuable insight for the subsea industry, particularly in the areas of integrity management of in-service subsea jumpers; in-situ instrumentation and vibration measurements and limitations associated with predictive analysis of jumper FIV. If learnings, such as those discussed here, are fed back into design, analysis and monitoring guidelines for subsea equipment, the understanding and management of FIV could be dramatically enhanced compared to the current industry practice.


2011 ◽  
Vol 21 (10) ◽  
pp. 2893-2904 ◽  
Author(s):  
LADISLAV PŮST ◽  
LUDĚK PEŠEK

The steady state response of a model of circular bladed disk with imperfection is investigated. Disk imperfection results from additional two groups of damping heads fixed on opposite ends of one diameter. These damping heads are introduced into the computing model as additional point mass, damping and stiffness. Such type of imperfection causes the bifurcation of double eigenfrequencies into pairs of close eigenfrequencies. The effect of imperfection is examined both numerically on three-dimensional nonrotating FE-model and analytically on a simplified split 2DOF model of rotating disk excited by single point harmonic force. Nonlinear friction connection is analyzed and equivalent linear damping coefficient is derived and used in the calculation procedure. It is shown that nonproportional distribution of damping strongly influences the high of resonance peaks. Some examples of response curves illustrate the dynamic properties of stationary and rotating disks with mass-damping-stiffness imperfection.


Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed discs with friction dampers of different design has been developed. The method uses explicit finite element modelling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different design in multiharmonic analysis of bladed discs. Large-scale finite element damper and bladed disc models containing 104–106 DOFs can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modelling of elastic damper bodies and for modelling of friction contact interactions. Numerical studies of realistic bladed discs have been performed with three different types of underplatform dampers: (i) a ‘cottage-roof’ (called also ‘wedge’) damper; (ii) seal wire damper; and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.


Author(s):  
Peiyi Wang ◽  
Lin Li

The mistuning of bladed disk comes from manufacturing tolerances and in-service wear and tear. Consequently the cyclic symmetry has been destroyed by mistuning, even small mistuning levels could result in drastic changes in the dynamics of bladed disks. Specifically, mistuning can cause mode localization and an increase of the maximum forced response. It has been known that frequency veering, modal localization and magnification of response are three most classical dynamic properties of bladed disk. However few researches has focused on the relationships between dynamic characters and design parameters, because the proper variation ranges of the design parameters are difficult to be determined. The aim of this paper is to investigate the relationship between designed parameters and dynamic properties of mistuned bladed disk. Based on a lumped parametric model of bladed disk and utilizing parameterized eigenvalue solution, a reasonable range of designed parameter corresponding to specific nodal diameter index was provided. The numerical results showed that the curves of the gap of frequency veering versus coupling strength or blade stiffness have bowel-style. It was also found that there exists a quasi-saddle-surface while the vibration amplification factor varies with coupling strength and mistuning strength. The quasi-saddle-surface reveals that the existence of threshold of vibration amplification factor depends on the value of coupling strength. The result means that a proper choice of combination of coupling strength and mistuning strength could lead to a suppression of mistuned vibration amplification.


Author(s):  
M. Afzal ◽  
I. Lopez Arteaga ◽  
L. Kari ◽  
V. Kharyton

This paper investigates the damping potential of strip dampers on a real turbine bladed disk. A 3D numerical friction contact model is used to compute the contact forces by means of the Alternate Frequency Time domain method. The Jacobian matrix required during the iterative solution is computed in parallel with the contact forces, by a quasi-analytical method. A finite element model of the strip dampers, that allows for an accurate description of their dynamic properties, is included in the steady-state forced response analysis of the bladed disk. Cyclic symmetry boundary conditions and the multiharmonic balance method are applied in the formulation of the equations of motion in the frequency domain. The nonlinear forced response analysis is performed with two different types of boundary conditions on the strip: (a) free-free and (b) elastic, and their influence is analyzed. The effect of the strip mass, thickness and the excitation levels on the forced response curve is investigated in detail.


Author(s):  
S. V. Efimov ◽  
K. O. Zhunev

Innovative heavy wagons with a 25–27 tf axle load and the freight train movement organization having a higher weight and length are being put into operation in Russia. New operating conditions of railway bridges require an assessment of bearing capacity, durability, accumulation rate of fatigue damage and reliability. The important parameters are the dynamic properties of railway bridges (frequencies and modes of natural vibrations, decay rate, dynamic stiffness).The aim of this work is to determine the dynamic interaction of trains having different structure, weight and length with a railway bridge using numerical modeling in the midas Civil bridge software. The proposed model is verified by the dynamic parameters of spans (natural vibration frequencies), which are determined during the bridge inspection using a Tensor-MS system.The modal analysis is given to the finite element model. The lowest natural modes of the bridge are determined. Based on numerical simulation of the interaction between the train and the bridge unfavorable speed of trains is calculated leading to an increase in the oscillation amplitude of the bridge span as well as in the bridge dynamic coefficient with regard to the design features of the train structure and composition.


Sign in / Sign up

Export Citation Format

Share Document