VIBRATION OF CIRCULAR BLADED DISK WITH IMPERFECTIONS

2011 ◽  
Vol 21 (10) ◽  
pp. 2893-2904 ◽  
Author(s):  
LADISLAV PŮST ◽  
LUDĚK PEŠEK

The steady state response of a model of circular bladed disk with imperfection is investigated. Disk imperfection results from additional two groups of damping heads fixed on opposite ends of one diameter. These damping heads are introduced into the computing model as additional point mass, damping and stiffness. Such type of imperfection causes the bifurcation of double eigenfrequencies into pairs of close eigenfrequencies. The effect of imperfection is examined both numerically on three-dimensional nonrotating FE-model and analytically on a simplified split 2DOF model of rotating disk excited by single point harmonic force. Nonlinear friction connection is analyzed and equivalent linear damping coefficient is derived and used in the calculation procedure. It is shown that nonproportional distribution of damping strongly influences the high of resonance peaks. Some examples of response curves illustrate the dynamic properties of stationary and rotating disks with mass-damping-stiffness imperfection.

Author(s):  
Jean de Cazenove ◽  
Scott Cogan ◽  
Moustapha Mbaye

Integrally bladed rotors dynamic properties are known to be particularly sensitive to small geometric discrepancies due to the machining process or in-service wear. In this context, it is straightforward that setting up accurate numerical models which take into account real mistuning patterns is a key issue in the prediction of forced response amplitudes under operating conditions. The present study focuses on an experimental bladed disk. Due to strong inter-blade coupling, the geometric mistuning is supposed to result in severe mode localization for the studied bladed disk, thus emphasizing the need of a realistic, predictive finite-element model. This paper describes the procedure which leads to the development and validation of a high-fidelity FE model for a realistic bladed disk, based on coordinate measurements by means of fringe projection. After giving an overview of the coordinate measurement and model building for the studied bladed disk, the comparison of cantilevered-blade and full disk calculated eigenfrequencies to individual blade and full disk in quasi-vacuum measurements are presented.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Jie Yuan ◽  
Fabrizio Scarpa ◽  
Branislav Titurus ◽  
Giuliano Allegri ◽  
Sophoclis Patsias ◽  
...  

The work investigates the application of a novel frame model to reduce computational cost of the mistuning analysis of bladed disk systems. A full-scale finite element (FE) model of the bladed disk is considered as benchmark. The frame configuration for a single blade is identified through structural identification via an optimization process. The individual blades are then assembled by three-dimensional (3D) springs, whose parameters are determined by means of a calibration process. The dynamics of the novel beam frame assembly is also compared to those obtained from three state-of-the-art FE-based reduced order models (ROMs), namely: a lumped parameter approach, a Timoshenko beam assembly, and component mode synthesis (CMS)-based techniques with free and fixed interfaces. The development of these classical ROMs to represent the bladed disk is also addressed in detail. A methodology to perform the mistuning analysis is then proposed and implemented. A comparison of the modal properties and forced response dynamics between the aforementioned ROMs and the full-scale FE model is presented. The case study considered in this paper demonstrates that the beam frame assembly can predict the variations of the blade amplitude factors, and the results are in agreement with full-scale FE model. The CMS-based ROMs underestimate the maximum amplitude factor, while the results obtained from beam frame assembly are generally conservative. The beam frame assembly is four times more computationally efficient than the CMS fixed-interface approach. This study proves that the beam frame assembly can efficiently predict the mistuning behavior of bladed disks when low-order modes are of interest.


2018 ◽  
Vol 211 ◽  
pp. 09001 ◽  
Author(s):  
Izabela Drygała ◽  
Joanna M. Dulinska ◽  
Marek Wazowski

The primary purpose of this research is the evaluation of human-induced vibrations of a cable-stayed footbridge. The cable-stayed pedestrian bridge with total length of the span equal to 46.90 m located in Czestochowa (Southern Poland) was chosen as a case study. The footbridge consists of two spans (21.10 m and 25.80 m). A three-dimensional (3D) finite element (FE) model of the footbridge was prepared with the ABAQUS software program. The dynamic properties of the structure, i.e. its natural frequencies, modes shapes and damping ratios, were estimated on the basis of the in situ tests results as well as numerical analysis. For the validation of the modal models the modal assurance criterion (MAC) theory was applied. In the next stage of the investigation the dynamic response of the structure to human-induced loading was evaluated. Finally, the vibration comfort criteria for the footbridge were checked.


1980 ◽  
Vol 47 (4) ◽  
pp. 896-900 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
S. Aomura

The stress distribution and steady-state response of a rotating damped annular disk of variable thickness are determined by means of the matrix method. The equation of equilibrium and the equations for the flexural vibration of the rotating disk are written as a respective coupled set of first-order differential equations by use of the matrices of the disk. The elements of the matrices are calculated by numerical integration of the equations, and the stress components and the driving-point impedance and force transmissibility of the disk are obtained by using these elements. The method is applied to free-clamped rotating disks with linearly, exponentially, and hyperbolically varying thickness driven by a harmonic force at the free outer edge, and the effects of the angular velocity and the variable thickness are studied.


Author(s):  
Zhou Zheng ◽  
Subhash Rakheja ◽  
Ramin Sedaghati

Three-dimensional finite element (FE) models of the honeycomb NPWs with three different spokes’ configurations, realized by varying the cell angle, were formulated. The validity of the proposed NPW FE models was demonstrated by comparing the predicted wheel responses with the reported data. A FE model of the pneumatic wheel of identical size was also formulated and verified on the basis of the measured vertical force-deflection and cornering properties. The verified NPW models were subsequently employed to study their feasibility through comparisons of in-plane as well as out-of-plane properties with those of the pneumatic wheel. The influences of the cell angle and normal wheel load on the static and dynamic properties of the NPWs were also investigated. The results showed load-dependent longitudinal stiffness of the wheel due to strong coupling between radial and longitudinal deformations of the honeycomb spokes. The lateral stiffness, however, was observed to be load-independent due to negligible coupling between radial and lateral deformations of the spokes. The spokes of the honeycomb NPWs could thus be easily tuned to achieve vertical and longitudinal stiffness comparable to those of the reference pneumatic wheel. The lateral and cornering stiffness of the NPWs with the planar spokes, however, were substantially higher, irrespective of the spokes’ configuration considered. The significantly higher cornering stiffness resulted in rapid saturation of the cornering force of the NPWs at side-slip angles about 1.1°, which is likely to cause lateral sliding of the wheels and potential loss of directional control under higher side slip conditions.


1967 ◽  
Vol 89 (2) ◽  
pp. 177-184 ◽  
Author(s):  
R. J. Hanold ◽  
J. R. Moszynski

This investigation concerns the application of a flow visualization technique to obtain a quantitative and qualitative description of the secondary flow associated with a slowly oscillating disk. Included in the description is a systematic study of the flow behavior as a function of the Reynolds number. The three-dimensional character of the flow is verified and the development of a toroidal vortex both above and below the oscillating disk is illustrated. The experiments are performed in a vessel similar in design to a typical oscillating body viscometer. The effect of the Reynolds number on the damping rate of the disk is investigated. The influence of natural convective flows on the magnitude and reproducibility of the damping rate is obtained. The development of a secondary flow in the form of a toroidal vortex for both the rotating disk and rotating sphere is also illustrated.


Author(s):  
Yongliang Duan ◽  
Chaoping Zang ◽  
E. P. Petrov

This paper is focused on the analysis of effects of mistuning on the forced response of gas turbine engine bladed disks vibrating in the frequency ranges corresponding to higher modes. For high modes considered here, the blade aerofoils are deformed during vibrations and the blade mode shapes differ significantly from beam mode shapes. A model reduction technique is developed for the computationally efficient and accurate analysis of forced response for bladed disks vibrating in high-frequency ranges. The high-fidelity finite element (FE) model of a tuned bladed disk sector is used to provide primary information about dynamic properties of a bladed disk, and the blade mistuning is modeled by specially defined mistuning matrices. The forced response displacement and stress amplitude levels are studied. The effects of different types of mistuning are examined, and the existence of high amplifications of mistuned forced response levels is shown for high-mode vibrations: in some cases, the resonance peak response of a tuned structure can be lower than out-of-resonance amplitudes of its mistuned counterpart.


2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 72
Author(s):  
Luca Tonti ◽  
Alessandro Patti

Collision between rigid three-dimensional objects is a very common modelling problem in a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans from realistic animation of polyhedral shapes for computer vision to the description of thermodynamic and dynamic properties in simple and complex fluids. For instance, colloidal particles of especially exotic shapes are commonly modelled as hard-core objects, whose collision test is key to correctly determine their phase and aggregation behaviour. In this work, we propose the Oriented Cuboid Sphere Intersection (OCSI) algorithm to detect collisions between prolate or oblate cuboids and spheres. We investigate OCSI’s performance by bench-marking it against a number of algorithms commonly employed in computer graphics and colloidal science: Quick Rejection First (QRI), Quick Rejection Intertwined (QRF) and a vectorized version of the OBB-sphere collision detection algorithm that explicitly uses SIMD Streaming Extension (SSE) intrinsics, here referred to as SSE-intr. We observed that QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius, while SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI and SSE-intr, both based on SIMD parallelization, show excellent and very similar performance, the former provides a more accessible coding and user-friendly implementation as it exploits OpenMP directives for automatic vectorization.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


Sign in / Sign up

Export Citation Format

Share Document