Failure mechanics analysis of AISI 4340 steel using finite element modeling of the milling process

Author(s):  
Muhammed Muaz ◽  
Sanan H Khan

A slot cutting operation is studied in this paper using a rotating/translating flat end milling insert. Milling operation usually comprises up-milling and down-milling processes. These two types of processes have different behaviors with opposite trends of the forces thus making the operation complex in nature. A detailed Finite Element (FE) model is proposed in this paper for the failure analysis of milling operation by incorporating damage initiation criterion followed by damage evolution mechanism. The FE model was validated with experimental results and good correlations were found between the two. The failure criteria field variable (JCCRT) was traced on the workpiece to observe the amount and rate of cutting during the machining process. It was found that the model was able to predict different failure energies that are dissipated during the machining operation which are finally shown to be balanced. It was also shown that the variation of these energies with the tool rotation angle was following the actual physical phenomenon that occurred during the cutting operation. Among all the energies, plastic dissipation energy was found to be the major contributor to the total energy of the system. A progressive failure analysis was further carried out to observe the nature of failure and the variation of stress components and temperature occurring during the machining process. The model proposed in this study will be useful for designers and engineers to plan their troubleshooting in various applications involving on-spot machining.

2011 ◽  
Vol 66-68 ◽  
pp. 569-572
Author(s):  
Hai Chao Ye ◽  
Guo Hua Qin ◽  
Cong Kang Wang ◽  
Dong Lu

Machining deformation has always been a bottleneck issue in the manufacturing field of aeronautical monolithic components. On the base of finite element method, the effect of the process steps and tool paths on the workpiece stiffness and the redistribution of residual stress in the machining process of aeronautical frame monolithic component was investigated under the given fixturing scheme. Thus, the prediction of the workpiece deformation can be carried out in reason. The proposed simulation approach to deformation analysis can be used to observe the true characteristic of milling forces and machining deformations. Therefore, the proposed method can supply the theoretical basis for the determination of the optimal process parameters.


Author(s):  
Reza Madoliat ◽  
Sajad Hayati

This paper primarily deals with suppression of chatter in end-milling process. Improving the damping is one way to achieve higher stability for machining process. For this purpose a damper is proposed that is composed of a core and a multi fingered hollow cylinder which are shrink fitted in each other and their combination is shrink fitted inside an axial hole along the tool axis. This structure causes a resisting friction stress during bending vibration. Using FEA-ANSYS the structure is simulated. Then a parameter study is carried out where the frequency response and the depth of cut are calculated and tabulated to obtain the most effective configuration. The optimal configuration of tool is fabricated and finite element results are validated using modal test. The results show a high improvement in performance of the tool with proposed damper. Good agreement between experiments and modeling is obtained.


2020 ◽  
Author(s):  
Yang Peng ◽  
Tian-Ye Lin ◽  
Jing-Li Xu ◽  
Hui-Yu Zeng ◽  
Da Chen ◽  
...  

Abstract BackgroundThe positional distribution and size of the weight-bearing area of femoral head in the standing position as well as the direct active surface of joint force can directly affect the result of finite element (FE) stress analysis, however in most studies related separate FE models of femur, the division of this area is vague, imprecise and un-individualized. The purpose of this study was to quantify the positional distribution and size of the weight-bearing area of femoral head in standing position by a set of simple methods, to realize individualized reconstruction of proximal femur FE model.MethodsFive adult volunteers were recruited for X-ray and CT examination in the same simulated bipedal standing position with a specialized patented device. We extracted these image data, calculated the 2D weight-bearing area on X-ray image, reconstructed the 3D model of proximal femur based on CT data, and registered them to realize the 2D weight-bearing area to 3D transformation as the quantified weight-bearing surface. One of the 3D models of proximal femur was randomly selected for finite element analysis (FEA), and we defined three different loading surfaces, and compared their FEA results.ResultsA total of 10 weight-bearing surfaces in 5 volunteers were constructed, they were mainly distributed on the dome and anterolateral of femoral head with crescent shape, in the range of 1,218.63mm2 - 1,871.06mm2. The results of FEA showed stress magnitude and distribution in proximal femur FE models among three different loading conditions were significant differences, the loading case with quantized weight-bearing area was more in accordance with the physical phenomenon of the hip.ConclusionThis study confirmed an effective FE modeling method of proximal femur, which can quantify weight-bearing area to define more reasonable load surface setting without increasing the actual modeling difficulty.


Author(s):  
Jean de Cazenove ◽  
Scott Cogan ◽  
Moustapha Mbaye

Integrally bladed rotors dynamic properties are known to be particularly sensitive to small geometric discrepancies due to the machining process or in-service wear. In this context, it is straightforward that setting up accurate numerical models which take into account real mistuning patterns is a key issue in the prediction of forced response amplitudes under operating conditions. The present study focuses on an experimental bladed disk. Due to strong inter-blade coupling, the geometric mistuning is supposed to result in severe mode localization for the studied bladed disk, thus emphasizing the need of a realistic, predictive finite-element model. This paper describes the procedure which leads to the development and validation of a high-fidelity FE model for a realistic bladed disk, based on coordinate measurements by means of fringe projection. After giving an overview of the coordinate measurement and model building for the studied bladed disk, the comparison of cantilevered-blade and full disk calculated eigenfrequencies to individual blade and full disk in quasi-vacuum measurements are presented.


2012 ◽  
Vol 165 ◽  
pp. 285-289 ◽  
Author(s):  
A.A. Borhana ◽  
A.T. Mohamad ◽  
A. Abdul-Latif ◽  
Z. Ahmad ◽  
A. Ayob ◽  
...  

A finite element (FE) model incorporating a progressive material damage with Rice-Tracey damage initiation criterion is developed in this study. The relationship between local ductility reduction and stress triaxiality was established experimentally. The FE model was validated by comparisons of load-displacement response of the spot welded lap joint specimen at displacement rate of 5 mm/min and the observed ductile failure mechanism. Results show that Rice-Tracey damage initiation criterion used is sufficient to reproduce the observed ductile failure response of the specimen. Failure of the spot welded lap joint is initiated at the HAZ/fusion zone interface with localized necking.


2010 ◽  
Vol 458 ◽  
pp. 283-288 ◽  
Author(s):  
R. Izamshah R.A. ◽  
John Mo ◽  
Song Lin Ding

In an attempt to decrease weight, new commercial and military aircraft are designs with unitised monolithic metal structural components which contains of thinner ribs (i.e., walls) and webs (i.e., floors). Most of the unitised monolithic metal structural components are machined from solid plate or forgings with the start-to-finish weight ratio of 20:1. The resulting thin-walled structure often suffers a deformation which causes a dimensional surface error due to the action of the cutting force generated during the machining process. To alleviate the resulting surface errors, current practices rely on machining through repetitive feeding several times and manual calibration which resulting in long cycle times, low productivity and high operating cost. A finite element analysis (FEA) machining model is developed in this project to specifically predict the distortion or deflection of the part during end milling process. The model aims to provide an input for downstream decision making on error compensation strategy when machining a thin-wall unitised monolithic metal structural components. A set of machining tests have been done in order to validate the accuracy of the model and the results between simulation and experiment are found in a good agreement.


2013 ◽  
Author(s):  
Long Meng ◽  
Xueping Zhang ◽  
Anil K. Srivastava

Finite Element Analysis (FEA) is widely used to simulate machining processes. However, in general, it is time consuming, error-prone, and requires repeated efforts to establish a verified successful Finite Element (FE) model. To rapidly investigate the effects of parameters such as tool angle, feed rate, cutting speed, and temperatures generated during the machining process, an efficient approach is proposed in this paper. The technique has been used to achieve rapid FF simulation during turning and milling processes using Python language programming of Abaqus. Sub-model 1 is programmed to simulate the chip formation process in Abaqus/Explicit. Sub-model 2 is programmed to simulate the cooling spring-back process by importing the machined surface into Abaqus/Implicit. The proposed method is capable of simulating the chip morphology, stress, strain and temperature of the machining process with different parameters immediately. The established FE models are automatically solved in batch by programming script. Post-processing is programmed by Abaqus script to easily achieve and evaluate the simulation results. The Programmed FE models are validated in terms of the predicted chip morphology, cutting forces and residual stresses. This method is extraordinarily efficient saving more than 33% simulation time in comparison to existing FEA approach used for machining processes. Moreover, the script is concise, easy to debug, and effectively avoiding interactive mistakes. The rapid programming model provides a novel, efficiency and convenient approach to thoroughly investigate the effects of a large number of parameters on machining processes.


Author(s):  
Leo Kumar S. P. ◽  
Avinash D.

Finite element analysis (FEA) is a numerical technique in which product behavior under various loading conditions is predicted for ease of manufacturing. Due to its flexibility, its receiving research attention across domain discipline. This chapter aims to provide numerical investigation on chip formation in micro-end milling of Ti-6Al-4V alloy. It is widely used for medical applications. The chip formation process is simulated by a 3D model of flat end mill cutter with an edge radius of 5 μm. Tungsten carbide is used as a tool material. ABACUS-based FEA package is used to simulate the chip formation in micro-milling operation. Appropriate input parameters are chosen from the published literature and industrial standards. 3-D orthogonal machining model is developed under symmetric proposition and assumptions in order to reveal the chip formation mechanism. It is inferred that the developed finite element model clearly shows stress development in the cutting region at the initial stage is higher. It reduces further due to tool wear along the cutting zone.


2008 ◽  
Vol 44-46 ◽  
pp. 765-772 ◽  
Author(s):  
Xi Hai Shen ◽  
Xiang Ling

The glass-to-metal seals are usually used in the solar thermal power (STP) and electronic devices. However, the requirement of mechanical properties in the STP is much higher than that of electronic devices, because the glass-to-metal joints used in the STP need to have anti-fatigue performance in adition to higher static tensile strength. Under the repeated fluctuating loads, damage and failures of glass-to-metal seals in the STP often lead to serious consequences. Therefore, analysis of damage evolution and fracture behavior of glass-to-metal diffusion welded joints was performed in this paper. Firstly, the finite element (FE) model of glass-to-metal welded joints was established in accordance with the STP welded structures. And damage simulation was carried out by the FE software ABAQUS. Also, the work illustrates the modeling of damage in terms of traction versus separation to simulate crack propagation and introduces the use of traction-separation law as a damage initiation and evolution criteria. The microgram of damage distribution in the glass side near the interface could be characterized by Scanning Electron Microscope (SEM), which was compared with predictions obtained by finite element method (FEM) analysis. As result, the damage criteria on the lap joints in conjunction with FM analysis were used to optimize the glass-to-metal diffusion welding technology. The above results provide the basis of design against damage and reliable estimation of glass-to-metal seals.


2010 ◽  
Vol 97-101 ◽  
pp. 3014-3019 ◽  
Author(s):  
Cong Kang Wang ◽  
Guo Hua Qin ◽  
Dong Lu ◽  
S.Q. Xin

During the milling operation, milling forces are the main factor to cause the machining deformation of the workpiece. The flow stress of Al 7075-T7451 was first described as a function of strain, stain rate and temperature in order to obtain the true behavior in machining process. Second, a finite element method of milling process of Al 7075-T7451 was developed to obtain milling force simulations. Finally, simulated results are compared with experimental data and are shown to be in good agreement with each other.


Sign in / Sign up

Export Citation Format

Share Document