Effect of Channel Orientation on Heat Transfer in Rotating Smooth Square U-Duct at High Rotation Number

Author(s):  
Yang Li ◽  
Hongwu Deng ◽  
Guoqiang Xu ◽  
Lu Qiu ◽  
Shuqing Tian

The effect of channel orientation on heat transfer in a rotating, two-pass, square channel is experimentally investigated in current work. The classical copper plate technique is employed to measure the regional averaged heat transfer coefficients. The inlet Reynolds number and Rotation number range from 25000 to 35000 and 0 to 0.82, respectively. Five different channel angles (−45°, −22.5°, 0°, 22.5°, 45°) are selected to study the effect of channel orientation on heat transfer. In the radially outward flow channel, the surface average heat transfer in β = 0° channel are higher than those in angled-channel (±22.5°, ±45°) on the trailing surface at all Rotation number ranges (0–0.82). While on the leading surface, surface average heat transfer are lower before a critical Rotation number, and turn higher after the critical point. Channel orientations show less influence on heat transfer in the radially inward flow channel. Compared with their corresponding perpendicular channel orientation values (β = 0° channel), heat transfer in angled-channels decrease on the pressure side and increase on the suction side at a relatively lower Rotation number (Ro<0.4) for both inward and outward channels. While at higher Rotation number (Ro>0.4), heat transfer in angled-channel decrease on both the leading and trailing walls in the first pass, and increase on both the leading and trailing walls in the second pass. By considering the effect of channel orientations, the relation between critical Rotation number on the leading surface in the first pass and dimensionless location (X/D) obeys a simple rule: (Roc·X/D)·cosβ = 1.31. The trailing-to-leading heat transfer differences induced by rotation increase with the increasing of Rotation number in angled-channel, and they are larger than β = 0° channel after the critical Rotation number in both passages.

Author(s):  
Lu Qiu ◽  
Hongwu Deng ◽  
Zhi Tao

The effect of channel orientation on heat transfer in a rotating wedge-shaped cooling channel is experimentally investigated in current work. In order to perform a fundamental research, all turbulators are removed away. The classical copper plate technique is employed to measure the regional averaged heater transfer coefficients. The inlet Reynolds number and rotational speed range from 5100 to 21000 and zero to 1000rpm respectively, which results in the inlet Rotation number varies from zero to 0.68. In order to study the effect of channel orientation, five different angles are selected in current study. Furthermore, details such as local bulk temperature calculation and local mass flow rate determination are discussed in current paper. Interestingly, a two-dimensional bulk temperature distribution is observed. Due to the experimental results, the most evident rotation effect on heat transfer happens in 90° configuration. Compared to the non-rotating condition, there is about 35% overall heat transfer enhancement under highest rotation number. However, the greatest leading-to-trailing heat transfer difference happens in 135° or 112.5° configuration which depends on Rotation number. The highest difference is up to 40%. Besides, at the realistic 135° channel orientation, a critical Rotation number is observed after which the decreasing trend of heat transfer is traversed. The inlet Rotation is better than local one to describe this critical point. With the inlet parameter, the critical Rotation number is about 0.3 at all the locations in this channel.


Author(s):  
Xuewang Wu ◽  
Zhi Tao ◽  
Lu Qiu ◽  
Shuqing Tian ◽  
Yang Li

Experimental investigations have been conducted on a rotating two-pass square channel, in which staggered ribs (attack angle of 45 degree) are roughened on both leading and trailing surfaces. The hydraulic diameter of the channel is 24 mm, and the pitch-to-height ratio and diameter-to-height ratios of the ribs are both 10:1. Reynolds number and rotational speed range from 20000 to 40000 and zero to 1000 rpm respectively. Since the absolute pressure in this channel is increased above 5 atm, the maximum rotation number reaches to 1.025. Regional averaged heat transfer coefficients are measured by classical copper plate technique. Pressure drops are measured by newly designed rotating pressure measurements module. Data are compared to that obtained in rotating smooth U-duct. It shows that the ribbed U-duct achieves enhanced regional heat transfer performances than the smooth case under stationary and rotating conditions at almost all locations except the turn region which has no ribs placed in. In the first passage of the ribbed case, the trends of stream-wise heat transfer distribution on both leading and trailing surfaces are altered compared to the counterparts in smooth case at rotation number range of 0–1.025. Besides, different from the smooth case in which the critical rotation number on heat transfer in the first leading passage decreases as X/D increases, the trend of critical rotation number in the ribbed case is not clear. Moreover, various phenomena reveal that the inserting ribs can offset the effect of rotation on heat transfer. The trends of friction factor and thermal performance as a function of rotation number in ribbed case are totally different to smooth case and they both achieve optimized value at Ro = 0.6.


Author(s):  
Liang Ding ◽  
Shuqing Tian ◽  
Hongwu Deng

Heat transfer in a rotating two-pass trapezium-shaped channel, with staggered 90-deg ribs on both leading and trailing surfaces is experimentally investigated. The hydraulic diameter of the first and second pass is 24.5 mm and 16.9 mm, respectively. The inlet Reynolds number and rotational speed range from 10000 to 50000 and zero to 1000 rpm, respectively, which results in the inlet rotation number varying from zero to 1.0. The heated copper plate technique is employed to measure the regional averaged heater transfer coefficients. Pressure drops are measured by newly designed rotating pressure measurements module. Both ribbed cases and smooth cases are compared to present rib enhancement effect. For non-rotating result, the results show that the trailing surface presents much higher heat transfer than other cases due to the special wedge-shaped geometry. The ribbed wedge-shaped achieves enhanced regional heat transfer performances than the smooth case at all locations. Compared with the non-rotating results in the first pass, heat transfer on both trailing and leading surfaces is enhanced except for the position near the turn region, but weakened on outer surface in stream-wise direction. And at high rotation numbers, the highest maximum heat transfer on railing surface happens at a location of approximately X/D = 10. In the first pass, rotation always enhances heat transfer on the trailing surface as rotation number increases and the rotation-to-stationary Nusselt number ratio reaches to 2.0 at the rotation number of 0.5. The leading and outer surfaces both have a critical rotation number located at Roc = 0.05.


1996 ◽  
Vol 118 (3) ◽  
pp. 578-584 ◽  
Author(s):  
S. Dutta ◽  
J.-C. Han

This paper presents experimental heat transfer results in a two-pass square channel with smooth and ribbed surfaces. The ribs are placed in a staggered half-V fashion with the rotation orthogonal to the channel axis. The channel orientation varies with respect to the rotation plane. A change in the channel orientation about the rotating frame causes a change in the secondary flow structure and associated flow and turbulence distribution. Consequently, the heat transfer coefficient from the individual surfaces of the two-pass square channel changes. The effects of rotation number on local Nusselt number ratio distributions are presented. Heat transfer coefficients with ribbed surfaces show different characteristics in rotation number dependency from those with smooth surfaces. Results show that staggered half-V ribs mostly have higher heat transfer coefficients than those with 90 and 60 deg continuous ribs.


1979 ◽  
Vol 101 (1) ◽  
pp. 120-125 ◽  
Author(s):  
K. R. Randall ◽  
J. W. Mitchell ◽  
M. M. El-Wakil

Heat transfer by natural convection in rectangular enclosures has been experimentally studied using interferometric techniques. The effects of Grashof number, tilt angle, and aspect ratio on both the local and average heat transfer coefficients have been determined. The Grashof number range tested was 4 × 103 to 3.1 × 105, and the aspect ratio (ratio of enclosure length to plate spacing) varied between 9 and 36. The angles of tilt of the enclosure with respect to the horizontal were 45, 60, 75 and 90 deg. Correlations are developed for both local and average Nusselt number over the range of test variables. The effect of tilt angle is found to reduce the average heat transfer by about 18 percent from the value of 45 deg to that at 90 deg. No significant effect of aspect ratio over the range tested was found. A method for characterizing the flow regimes that is based on heat transfer mechanisms is proposed.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Eric A. Browne ◽  
Gregory J. Michna ◽  
Michael K. Jensen ◽  
Yoav Peles

The heat transfer performance of two microjet arrays was investigated using degassed deionized water and air. The inline jet arrays had diameters of 54 μm and 112 μm, a spacing of 250 μm, a standoff of 200 μm (S/d=2.2 and 4.6, H/d=1.8 and 3.7), and jet-to-heater area ratios from 0.036 to 0.16. Average heat transfer coefficients with deionized water were obtained for 150≤Red≤3300 and ranged from 80,000 W/m2 K to 414,000 W/m2 K. A heat flux of 1110 W/cm2 was attained with 23°C inlet water and an average surface temperature of 50°C. The Reynolds number range for the same arrays with air was 300≤Red≤4900 with average heat transfer coefficients of 2500 W/m2 K to 15,000 W/m2 K. The effect of the Mach number on the area-averaged Nusselt number was found to be negligible. The data were compared with available correlations for submerged jet array heat transfer.


Author(s):  
Y. M. Zhang ◽  
J. C. Han ◽  
J. A. Parsons ◽  
C. P. Lee

The influence of uneven wall temperature on the local heat transfer coefficient in a rotating, two-pass, square channel with 60° ribs on the leading and trailing walls was investigated for Reynolds numbers from 2,500 to 25,000 and rotation numbers from 0 to 0.352. Each pass, composed of six isolated copper sections, had a length-to-hydraulic diameter ratio of 12. The mean rotating radius-to-hydraulic diameter ratio was 30. Three thermal boundary condition cases were studied: (A) all four walls at the same temperature, (B) all four walls at the same heat flux, and (C) trailing wall hotter than leading with side walls unheated and insulated. Results indicate that rotating ribbed wall heat transfer coefficients increase by a factor of 2 to 3 over the rotating smooth wall data and at reduced coefficient variation from inlet to exit. As rotation number (or buoyancy parameter) increases, the first pass (outflow) trailing heat transfer coefficients increase and the first pass leading heat transfer coefficients decrease, whereas, the reverse is true for the second pass (inflow). The direction of the Coriolis force reverses from the outflow trailing wall to the inflow leading wall. Differences between the first pass leading and trailing heat transfer coefficients increase with rotation number. A similar behavior is seen for the second pass leading and trailing heat transfer coefficients, but the differences are reduced due to buoyancy changing from aiding to opposing the inertia force. The results suggest that uneven wall temperature has a significant impact on the local heat transfer coefficients. The heat transfer coefficients on the first pass leading wall for cases B and C are up to 70–100% higher than that for case A, while the heat transfer coefficients on the second pass trailing wall for cases B and C are up to 20–50% higher.


1962 ◽  
Vol 84 (2) ◽  
pp. 133-140 ◽  
Author(s):  
W. S. Brown ◽  
C. C. Pitts ◽  
G. Leppert

An approximate analytical solution is presented for the variation of the local heat-transfer coefficient over the forward half of a uniformly heated sphere. Experimental measurements with water over a Reynolds number range of 5000 to 480,000 and a Prandtl number range of 2.2 to 6.8 give local coefficients which are in good agreement with analytical results. Average heat-transfer coefficients for the uniformly heated sphere are slightly higher than similar results reported earlier [1] for an isothermal sphere. The effect of variations of heat flux on the average heat-transfer coefficient is correlated in a manner similar to that which was used for the isothermal data. Three different duct sizes were used in the experiment to determine the effect of this variable, and the correlations which are presented are based on duct-to-sphere diameter ratios of 2, 2.67, and 4.


Author(s):  
Szu-Chi Huang ◽  
Yao-Hsien Liu

Heat transfer in a leading edge, triangular-shaped cooling channel with three channel orientations under high rotation numbers is investigated in this study. Continuous ribs and V-shaped ribs (P/e = 9, e/Dh = 0.085), both placed at an angle (α = 45 deg) to the mainstream flow, are applied on the leading and trailing surfaces. The Reynolds number range is 15,000–25,000 and the rotation number range is 0–0.65. Effects of high rotation number on heat transfer with three angles of rotation (90 deg, 67.5 deg, and 45 deg) are tested. Results show that heat transfer is influenced by the combined effects of rib and channel orientation. When the rotation number is smaller than 0.4, rotation causes a decrease in the average Nusselt number ratios on the leading surface at a channel orientation of 90 deg. Heat transfer is enhanced gradually on the leading surface when the channel orientation varies from 90 deg to 45 deg for both ribbed cases. The highest heat transfer enhancement due to rotation is found at the highest rotation number of 0.65.


1995 ◽  
Vol 117 (2) ◽  
pp. 272-280 ◽  
Author(s):  
Y. M. Zhang ◽  
J. C. Han ◽  
J. A. Parsons ◽  
C. P. Lee

The influence of uneven wall temperature on the local heat transfer coefficient in a rotating, two-pass, square channel with 60 deg ribs on the leading and trailing walls was investigated for Reynolds numbers from 2500 to 25,000 and rotation numbers from 0 to 0.352. Each pass, composed of six isolated copper sections, had a length-to-hydraulic diameter ratio of 12. The mean rotating radius-to-hydraulic diameter ratio was 30. Three thermal boundary condition cases were studied: (A) all four walls at the same temperature, (B) all four walls at the same heat flux, and (C) trailing wall hotter than leading with side walls unheated and insulated. Results indicate that rotating ribbed wall heat transfer coefficients increase by a factor of 2 to 3 over the rotating smooth wall data and at reduced coefficient variation from inlet to exit. As rotation number (or buoyancy parameter) increases, the first pass (outflow) trailing heat transfer coefficients increase and the first pass leading heat transfer coefficients decrease, whereas the reverse is true for the second pass (inflow). The direction of the Coriolis force reverses from the outflow trailing wall to the inflow leading wall. Differences between the first pass leading and trailing heat transfer coefficients increase with rotation number. A similar behavior is seen for the second pass leading and trailing heat transfer coefficients, but the differences are reduced due to buoyancy changing from aiding to opposing the inertia force. The results suggest that uneven wall temperature has a significant impact on the local heat transfer coefficients. The heat transfer coefficients on the first pass leading wall for cases B and C are up to 70–100 percent higher than that for case A, while the heat transfer coefficients on the second pass trailing wall for cases B and C are up to 20–50 percent higher.


Sign in / Sign up

Export Citation Format

Share Document