Automatic Three Dimensional Grid Generation in Turbo Machine Blade Passages

Author(s):  
R. A. Zagitov ◽  
A. N. Dushko ◽  
Yu. N. Shmotin

Generation of the grid for blade passages with packaging using universal grid generators usually takes much time. The paper is devoted to grid generation in turbo machine blade passages with packaging in automatic mode. The main requirement to the approach is to obtain the grid with minimum engineer participant. In the developed procedure engineer must specify only general input data: number of nodes, cell size near solid bodies and geometrical data. Multiblock structured grids are considered. All grid blocks have node-to-node attachment between each other; periodicity is also specified from node to node. The grid in blade passage consists of two blocks: “O” grid around blade and “H” grid in blade passage. Additional blocks are used to describe different ZR-effects such us tip clearances, leakage seals and bleed air systems. A variational method of constructing three dimensional grids composed of hexahedral cells is applied. The combination of the energy density functional and cell size functional is used. The first functional lets us control the shapes and the second functional lets us control the sizes of grid cells. Grid untangling procedure is also developed. Developed approach was tested using the blades of axial and centrifugal compressors and axial turbines. Results of grid generation are presented.

2015 ◽  
Vol 24 (09) ◽  
pp. 1541005 ◽  
Author(s):  
Denis Lacroix ◽  
Yusuke Tanimura ◽  
Guillaume Scamps ◽  
Cédric Simenel

In the last 10 years, we have observed an important increase of interest in the application of time-dependent energy density functional (TD-EDF) theory. This approach allows to treat nuclear structure and nuclear reaction from small to large amplitude dynamics in a unified framework. The possibility to perform unrestricted three-dimensional simulations using state-of-the-art effective interactions has opened new perspectives. In the present paper, an overview of applications where the predictive power of TD-EDF has been benchmarked is given. A special emphasize is made on processes that are of astrophysical interest. Illustrations discussed here include giant resonances, fission, binary and ternary collisions leading to fusion, transfer and deep inelastic processes.


Author(s):  
Shinkuro Sakai ◽  
Kenichi Yoshida ◽  
Masayuki Matsuo

Abstract We investigate the possible occurrence of highly elongated shapes near the yrast line in $^{40}$Ca and $^{41}$Ca at high spins on the basis of the nuclear energy-density functional method. Both the superdeformed (SD) yrast configuration and the yrare configurations on top of the SD band are described by solving the cranked Skyme–Kohn–Sham equation in the three-dimensional coordinate space representation. It is suggested that some of the excited SD bands undergo band crossings and develop to hyperdeformation (HD) beyond $J \simeq 25 \hbar$ in $^{40}$Ca. We find that the change of triaxiality in response to rotation plays a decisive role in the shape evolution towards HD, and that this is governed by the signature quantum number of the last occupied orbital at low spins. This mechanism can be verified in an experimental observation of the positive-parity SD yrast signature-partner bands in $^{41}$Ca, one of which ($\alpha=+1/2$) undergoes crossings with the HD band, while the other ($\alpha=-1/2$) shows smooth evolution from collective rotation at low spins to non-collective rotation with an oblate shape at termination.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 328
Author(s):  
Raquel Álvarez-Vidaurre ◽  
Alfonso Castiñeiras ◽  
Antonio Frontera ◽  
Isabel García-Santos ◽  
Diego M. Gil ◽  
...  

This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) (1) and [Hinh]+[Hma]–·(H2ma) (2) when reacted with isoniazid. An N′-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pinh)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. These prepared compounds were well characterized by elemental analysis, and spectroscopic methods, and their three-dimensional molecular structure was determined by single crystal X-ray crystallography. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems. Finally, Hirshfeld surface analysis and Density-functional theory (DFT) calculations (including NCIplot and QTAIM analyses) have been performed to further characterize and rationalize the non-covalent interactions.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
K. Nomura ◽  
R. Rodríguez-Guzmán ◽  
Y. M. Humadi ◽  
L. M. Robledo ◽  
J. E. García-Ramos

2019 ◽  
Vol 221 ◽  
pp. 01003
Author(s):  
Pavel Radchenko ◽  
Stanislav Batuev ◽  
Andrey Radchenko

The paper presents results of applying approach to simulation of contact surfaces fracture under high velocity interaction of solid bodies. The algorithm of erosion -the algorithm of elements removing, of new surface building and of mass distribution after elements fracture at contact boundaries is consider. The results of coordinated experimental and numerical studies of fracture of materials under impact are given. Authors own finite element computer software program EFES, allowing to simulate a three-dimensional setting behavior of complex structures under dynamic loads, has been used for the calculations.


Sign in / Sign up

Export Citation Format

Share Document