Investigations on Transonic Flow of Super-Critical CO2 Through Carbon Ring Seals

Author(s):  
Eike Hylla ◽  
Markus Schildhauer ◽  
Richard Büssow ◽  
Kolja Metz ◽  
Robert Klawes

This paper gives an overview of numerical and experimental investigations on super-critical CO2 flow through carbon floating ring seals (CRS). The established simulation model considers the real gas effect, temperature deformation and the shaft rotation. For validation extensive measurements of the leakage rates, pressures and temperatures at various positions within the seal were conducted on a compressor prototype. Details of the measurement setup and the test procedure are given. The experimental results are discussed. A comparison of the measured data to the model prediction shows an overall good agreement.

2021 ◽  
Author(s):  
Yufei Chen ◽  
Juliana Y. Leung ◽  
Changbao Jiang ◽  
Andrew K. Wojtanowicz

Abstract The past decade has seen the rapid development of shale gas across the world, as the record-breaking success and on-going surge of commercial shale gas production in such unconventional reservoirs pose a tremendous potential to meet the global energy supply. However, questions have been raised about the intricate gas transport mechanisms in the shale matrix, of which the gas slippage phenomenon is one of the key mechanisms for enhancing the fluid transport capacity and, therefore, the overall gas production. Given that shale reservoirs are often naturally deposited in the deep underground formations at high pressure and temperature conditions (much deeper than most typical conventional deposits), the real gas effect cannot be ignored as gas properties may vary significantly under such conditions. The purpose of this study is thus to investigate the real gas effect on the gas slippage phenomenon in shale by taking into account the gas compressibility factor (Z) and Knudsen number (Kn). This study begins with a specific determination of Z for natural gas at various pressures and temperatures under the real gas effect, followed by several calculations of the gas molecular mean free path at in-situ conditions. Following this, the real gas effect on gas slippage phenomenon in shale is specifically analyzed by examining the change in Knudsen number. Also discussed are the permeability deviation from Darcy flux (non-Darcy flow) due to the combination of gas slippage and real gas effect and the specific range of pressure and pore size for gas slippage phenomenon in shale reservoirs. The results show that the gas molecular mean free path generally increases with decreasing pressure, especially at relatively low pressures (< 20 MPa). And, increasing temperature will cause the gas molecular mean free path to rise, also at low pressures. Knudsen number of an ideal gas is greater than that of a real gas; while lower than that of a real gas as pressure continues to rise. That is, the real gas effect suppresses the gas slippage phenomenon at low pressures, while enhancing it at high pressures. Also, Darcy’s law starts deviating when Kn > 0.01 and becomes invalid at high Knudsen numbers, and this deviation increases with decreasing pore size. No matter how pore size varies, this deviation increases with decreasing pressure, meaning that the gas slippage effect is significant at low pressures. Finally, slip flow dominates in the various gas transport mechanisms given the typical range of pressure and pore size in shale reservoirs (1 MPa < P < 80 MPa; 3 nm < d < 3000 nm). Gas transport in shale is predominantly controlled by the slippage effect that mostly occurs in micro- or meso-pores (10 to 200 nm). Moreover, considering the real gas effect would improve the accuracy for determining the specific pressure range of the gas slippage phenomenon in shale.


Author(s):  
Hengjie Xu ◽  
Pengyun Song ◽  
Wenyuan Mao ◽  
Qiangguo Deng

By taking carbon dioxide and hydrogen as lubricating gas, respectively, this paper presents an analysis on the pressure characteristics and temperature distribution of spiral groove dry gas seal which influenced by real gas effect under choked flow condition. Numerical results show that the deviation between real gas and ideal gas, which expressed by the deviation degree between compressibility factor Z and 1, is the main reason for real gas effect affecting sealing performance. Compared with ideal gas model, real gas effect raises exit pressure, opening force, leakage rate, Mach number in dam region, and temperature for carbon dioxide ( Z < 1), while it decreases those characteristics for hydrogen ( Z > 1) under the same operating conditions. In addition, choked flow effect increases opening force and reduces leakage rate and temperature-drop between entrance and exit of sealing clearance. Meanwhile, it may cause an unstable behavior for the seal.


Author(s):  
Sebastian M. Schwarzendahl ◽  
Jaroslaw Szwedowicz ◽  
Marcus Neubauer ◽  
Lars Panning ◽  
Jörg Wallaschek

This paper deals with a new damping concept for turbine blade vibrations utilizing piezoelectric material. A passive piezo damper consists of a piezoelectric element and a passive electric network connected to its electrodes. The damping performance depends on the size and location of the piezoelectric element with respect to the mode shape of the mechanical strain. Numerical and experimental investigations are carried out on a rigidly clamped simplified compressor blade at stand still and ambient conditions. An optimization process incorporating electromechanical finite element calculations determines the optimal position of the piezo damper in regard to the mode shape of interest. By applying the computed and measured Frequency Response Functions, the damping performance with and without piezo-damper are compared and referred to the measured material damping. The obtained numerical results are in very good agreement with the measured data, leading to a promising damping performance in real application.


2011 ◽  
Vol 361-363 ◽  
pp. 603-606
Author(s):  
Yu Qiang Dai ◽  
Jiu Peng Zou ◽  
Che Zhu ◽  
Jin Tao Wu ◽  
Da Peng Hu

The unsteady flow behaviors in devices like gas wave machines, wave rotor refrigerators and so on are complex due to real gas effect at high operational pressure and low temperature. In this work, a detail computational model for unsteady flow analysis of real natural gases is established. The real effect on unsteady behaviors of natural gases in shock tubes have been studied extensively. Results show that the non-classical flow of the gases will not exist. The discipline of reflection and refraction of various gas waves or discontinuities remain unchanged for natural gases. Attention should be paid only to the deviations between perfect gas model and real gas model for gasdynamic waves.


2011 ◽  
Vol 2011.24 (0) ◽  
pp. 513-514
Author(s):  
Tsubasa OHSHIMA ◽  
Hirotoshi YANAGI ◽  
Yasuhide OKAZAKI ◽  
Koji MORINISHI

AIAA Journal ◽  
1976 ◽  
Vol 14 (12) ◽  
pp. 1766-1768 ◽  
Author(s):  
Peter K. Wu

Sign in / Sign up

Export Citation Format

Share Document