Characterization of Spray Formed by Liquid Jet Injected Into Oscillating Air Crossflow

Author(s):  
Jinkwan Song ◽  
Jong Guen Lee

This paper presents experimental results on the characteristics of spray formed by a liquid (Jet-A) jet injected into an oscillating air crossflow. Ambient air pressure is raised up to 15.86 bar, and the corresponding aerodynamic Weber number and liquid-air momentum flux ratio are up to 1000 and 25, respectively. The level of modulated crossflow velocity is kept up to 20% of its mean value. For limited cases, the air crossflow is preheated. Planar Mie-scattering measurements are utilized to visualize changes of the spray penetration and cross-sectional spray area in the oscillating air crossflow, and PDPA measurements are used to measure the mean drop size and drop size distribution. Phase-synchronized PDPA measurement of droplet size under the modulation of crossflow shows that the modulating crossflow results in preferentially larger amount of smaller and bigger droplets than average-sized droplets. Global spray response of spray to modulating crossflow is characterized by using proper orthogonal decomposition (POD) analysis of Mie-scattering images and collecting (and hence determining gain of) Mie-scattering intensity of droplets at a fixed downstream distance. It is found that the dominant behavior of the spray is convective oscillation in the axial direction and the change of vertical penetration of the spray is almost negligible for the level of crossflow velocity modulation up to 20%. The gain of Mie-scattering intensity with respect to crossflow velocity modulation level gradually decreases as liquid-air momentum flux ratio increases. Also, per given momentum flux ratio and Weber number, the gain hardly varies with respect to crossflow modulation level, suggesting the response of spray increases in proportion to crossflow velocity modulation level.

Author(s):  
Jinkwan Song ◽  
Charles Cary Cain ◽  
Jong Guen Lee

The breakup, penetration, droplet size, and size distribution of a Jet A-1 fuel in air crossflow has been investigated with focus given to the impact of surrounding air pressure. Data have been collected by particle Doppler phased analyzer (PDPA), Mie-scattering with high speed photography augmented by laser sheet, and Mie-scattering with intensified charge-coupled device (ICCD) camera augmented by nanopulse lamp. Nozzle orifice diameter, do, was 0.508 mm and nozzle orifice length to diameter ratio, lo/do, was 5.5. Air crossflow velocities ranged from 29.57 to 137.15 m/s, air pressures from 2.07 to 9.65 bar, and temperature held constant at 294.26 K. Fuel flow provides a range of fuel/air momentum flux ratio (q) from 5 to 25 and Weber number from 250 to 1000. From the results, adjusted correlation of the mean drop size has been proposed using drop size data measured by PDPA as follows: (D0/D32)=0.267Wea0.44q0.08(ρl/ρa)0.30(μl/μa)-0.16. This correlation agrees well and shows roles of aerodynamic Weber number, Wea, momentum flux ratio, q, and density ratio, ρl/ρa. Change of the breakup regime map with respect to surrounding air pressure has been observed and revealed that the boundary between each breakup modes can be predicted by a transformed correlation obtained from above correlation. In addition, the spray trajectory for the maximum Mie-scattering intensity at each axial location downstream of injector is extracted from averaged Mie-scattering images. From these results, correlations with the relevant parameters including q, x/do, density ratio, viscosity ratio, and Weber number are made over a range of conditions. According to spray trajectory at the maximum Mie-scattering intensity, the effect of surrounding air pressure becomes more important in the farfield. On the other hand, effect of aerodynamic Weber number is more important in the nearfield.


Author(s):  
Jinkwan Song ◽  
Charles Cary Cain ◽  
Jong Guen Lee

The breakup, penetration, droplet size and size distribution of a Jet A-1 fuel in air crossflow has been investigated with focus given to the impact of surrounding air pressure. Data has been collected by Particle Doppler Phased Analyzer (PDPA), Mie-Scattering with high speed photography augmented by laser sheet, and Mie-Scattering with ICCD Camera augmented by nano-pulse lamp. Nozzle orifice diameter, do, was 0.508 mm and nozzle orifice length to diameter ratio, lo/do, was 5.5. Air crossflow velocities ranged from 29.57 to 137.15 m/s, air pressures from 2.07 to 9.65 bar and temperature held constant at 294.26 K. Fuel flow was governed to provide a range of fuel/air momentum flux ratio q from 5 to 25 and Weber number from 250 to 1000. From the results, adjusted correlation of the mean drop size has been suggested using drop size data measured by PDPA as follows; (1)D0D32=0.267Wea0.44q0.08ρlρa0.30μlμa-0.16This correlation agrees well and shows roles of aerodynamic Weber number, Wea, momentum flux ratio, q, and density ratio, ρl/ρa. Change of the breakup regime map with respect with surrounding air pressure has been observed and revealed that the boundary between each breakup modes can be predicted by a transformed correlation induced from above correlation. In addition, the spray trajectory for the maximum Mie-scattering intensity at each axial location downstream of injector was extracted from averaged Mie-scattering images. From these results correlations with the relevant parameters including q, x/do, density ratio, viscosity ratio, and Weber number are made over a range of conditions. According to spray trajectory at the maximum Mie-scattering intensity, the effect of surrounding air pressure becomes more important in the farfield. On the other hand, effect of aerodynamic Weber number is more important in the nearfield.


Author(s):  
Jinkwan Song ◽  
Chandrasekar Ramasubramanian ◽  
Jong Guen Lee

Experimental results on the response of spray formed by the liquid (Jet-A) jet injection into a crossflow (Air) is presented with a special emphasis on its response to the modulating crossflow. The pressure of the chamber is up to 3.5 atm and the corresponding Weber number is up to 510. The spray of a liquid jet for steady and oscillating crossflow is characterized. The flow field at the injector location in the crossflow direction is determined using PIV (Particle Image Velocimetry) for oscillating as well as steady crossflow case. Planar Mie-scattering measurement is used to characterize the response of spray formed under oscillating crossflow and supplementary phase-averaged PDPA measurements are used to understand the response behavior. The global response of spray to the oscillating crossflow is characterized using the planar Mie-scattering imaging. It shows that there exist very little differences in the heights of the maximum-pixel intensity trajectory for the non-oscillating and oscillating crossflow conditions and the trajectory under oscillating crossflow is lower than that of steady crossflow, suggesting the oscillating crossflow affects the atomization (i.e. the oscillating crossflow enhances atomization process, results in smaller droplets and penetrates less transversely). The response of spray to the oscillating crossflow characterized in terms of the spray transfer function (STF) shows that the gain of the STF increases linearly (at least monotonically) as the liquid-air momentum flux ratio increases but does not change as much with respect to the change of the Weber number for a fixed liquid-air momentum flux ratio. This also indicates that the liquid jet atomization under oscillating crossflow is enhanced much more with the increase of liquid-air momentum flux ratio than with the increase of Weber number. The phase-averaged PDPA measurements confirm that the oscillating crossflow indeed enhances the atomization process in that the oscillating crossflow results in relatively greater number of smaller droplets and the mean droplet size.


Author(s):  
Venkat S. Iyengar ◽  
Sathiyamoorthy Kumarasamy ◽  
Srinivas Jangam ◽  
Manjunath Pulumathi

Cross flow fuel injection is a widely used approach for injecting liquid fuel in gas turbine combustors and afterburners due to the higher penetration and rapid mixing of fuel and the cross flowing airstream. Because of the very limited residence time available in these combustors it is essential to ensure that smaller drop sizes are generated within a short axial distance from the injector in order to promote effective mixing. This requirement calls for detailed investigations into spray characteristics of different injector configurations in a cross-flow environment for identifying promising configurations. The drop size characteristics of a liquid jet issuing from a forward angled injector into a cross-flow of air were investigated experimentally at conditions relevant to gas turbine afterburners. A rig was designed and fabricated to investigate the injection of liquid jet in subsonic cross-flow with a rectangular test section of cross section measuring 50 mm by 70 mm. Experiments were done with a 10 degree forward angled 0.8 mm diameter plain orifice nozzle which was flush mounted on the bottom plate of test section. Laser diffraction using Malvern Spraytec particle analyzer was used to measure drops size and distributions in the near field of the spray. Measurements were performed at a distance of 70 mm from the injector at various locations along the height of the spray plume for a reasonable range of liquid flow rates as in practical devices. The sprays were characterized using the non dimensional parameters such as the Weber number and the momentum flux ratio and drop sizes were measured at three locations along the height of the spray from the bottom wall. The momentum flux ratio was varied from 5 to 25. Results indicate that with increase in momentum flux ratio the SMD reduced at the specific locations and an higher overall SMD was observed as one goes from the bottom to the top of the spray plume. This was accompanied by a narrowing of the drop size distribution.


Author(s):  
Muthuselvan Govindaraj ◽  
Muralidhara Halebidu Suryanarayanarao ◽  
Prateekkumar Kotegar ◽  
Sonali Gupta ◽  
Sanjay Shankar ◽  
...  

The main objective of this computational analysis is to investigate the effect of increase in Weber number at constant momentum flux ratio on the primary breakup process and deformation of kerosene jet in cross stream air flow. Unsteady computational analysis with VOF approach is carried out to simulate the two phase flow at three different cross flow Weber number conditions (150, 350 and 400) at constant momentum flux ratio of 17. Since the results of VOF technique is highly sensitive to the size and distribution of grid, grid optimization process is carried out, with both structured and unstructured forms of the grid. Since the structured grid with number of elements 17,96,181 displayed better matching with experimental results of upper trajectory of kerosene jet; this grid is used to investigate the effect of turbulence model and Weber number on the windward trajectory of kerosene jet in cross flow air stream. Initially to evaluate the results of computational analysis; simulations are carried out with larger computational domain (with number of elements 17,96,181). Windward trajectory of computational analysis is compared with experimental results of upper trajectory predicted using image processing technique and reasonable overall matching is observed. To investigate the primary breakup process and deformation of liquid jet at three different increasing Weber number conditions, simulations are carried out with smaller computational domain with higher mesh density with number of elements 33,96,146. The computational technique used in the present analysis exactly captures the modes of breakup observed from experimental results at different Weber number operating conditions. To characterize the deformation of liquid jet at different Weber number conditions; near-field trajectory, cross stream dimension and wave length of liquid jet are quantified at different instants of time. With increase in Weber number, decrease in penetration of liquid jet along transverse direction and more bending of liquid jet along flow direction is observed. From the velocity profile along transverse direction of three different conditions, stronger shearing of liquid film is observed in higher Weber number conditions.


Author(s):  
Yosef Rezaei ◽  
Mehran Tadjfar

An experimental investigation was performed to study the physics of liquid jets injected into a low subsonic crossflow. The jets are issued from elliptical and circular injectors with equivalent exit area. The liquid jet was visualized using shadowgraph technique and a high speed camera was used to record the instantaneous status of the jet. The liquid / air momentum flux ratio and air Weber number were varied to examine their effects on different parameters of the flow like liquid jet column trajectory, breakup point and breakup regimes. The major axis of the elliptical nozzle was aligned parallel and perpendicular to the air crossflow direction. Two different breakup modes were observed, column breakup and bag breakup. Based on the obtained results some characteristics of injected liquid jets into the air crossflow such as penetration depth and the trajectory of liquid jet were affected by changing the nozzle exit shape.


2003 ◽  
Vol 125 (4) ◽  
pp. 901-908 ◽  
Author(s):  
J. Becker ◽  
C. Hassa

Fuel placement and air-fuel mixing in a generic aeroengine premix module employing plain jet liquid fuel injection into a counter-swirling double-annular crossflow were investigated at different values of air inlet pressure (6 bar, 700 K and 12 bar, 700 K) and liquid-to-air momentum flux ratio, both parameters being a function of engine power. Kerosene Jet A-1 was used as liquid fuel. Measurement techniques included LDA for investigation of the airflow and Mie-scattering laser light sheets and PDA for investigation of the two-phase flow. Measurements were taken at various axial distances from the fuel nozzle equivalent to mean residence times of up to 0.47 ms. It was found that the initial fuel placement reacts very sensitively to a variation of liquid-to-air momentum flux ratio. Susceptibility of the spray to dispersion due to centrifugal forces and to turbulent mixing is primarily a function of the fuel droplet diameters, which in turn depend on operating pressure. The data are interpreted by evaluation of the corresponding Stokes numbers.


Author(s):  
Julian Becker ◽  
Christoph Hassa

Fuel placement and air-fuel mixing in a generic aeroengine premix module employing plain jet liquid fuel injection into a counter-swirling double-annular crossflow were investigated at different values of air inlet pressure (6 bar, 700 K and 12 bar, 700 K) and liquid-to-air momentum flux ratio, both parameters being a function of engine power. Kerosene Jet A-1 was used as liquid fuel. Measurement techniques included LDA for investigation of the airflow and Mie-scattering laser light sheets and PDA for investigation of the two-phase flow. Measurements were taken at various axial distances from the fuel nozzle equivalent to mean residence times of up to 0.47 ms. It was found that the initial fuel placement reacts very sensitively to a variation of liquid-to-air momentum flux ratio. Susceptibility of the spray to dispersion due to centrifugal forces and to turbulent mixing is primarily a function of the fuel droplet diameters, which in turn depend on operating pressure. The data are interpreted by evaluation of the corresponding Stokes numbers.


2018 ◽  
Vol 28 (7) ◽  
pp. 599-620 ◽  
Author(s):  
Scott B. Leask ◽  
Vincent G. McDonell ◽  
Scott Samuelsen

Author(s):  
Amirreza Amighi ◽  
Nasser Ashgriz

An experimental study of liquid jet injection into subsonic air crossflow is presented. The aim of this study was to relate the jet trajectory to flow parameters, including jet and air velocities, pressure and temperature, as well as a set of nondimensional variables. For this purpose, an experimental setup was developed, which could withstand high temperatures and pressures. Images were captured using a laser-based shadowgraphy system. A total of 209 different conditions were tested and over 72,000 images were captured and processed. The crossflow air temperatures were 25 °C, 200 °C, and 300 °C; absolute crossflow air pressures were 2.1, 3.8, and 5.2 bars, and various liquid and gas velocities were tested for each given temperature and pressure. The results indicate that the trajectory and atomization change when the air and jet velocities are changed while keeping the momentum flux ratio constant. Therefore, it is beneficial to describe the trajectory based on air and jet Weber numbers or momentum flux ratio in combination with one of the Weber numbers. Also, examples are given where both Weber numbers are kept constant but the atomization is changed, and therefore, other terms beyond inertia terms are required to describe the spray behavior. It is also shown that the gas viscosity has to be considered when developing correlations. The correlations that include this term are generally better in predicting the trajectory. Therefore, Ohnesorge numbers in combination with the Weber numbers is used in the present correlations to describe the trajectories.


Sign in / Sign up

Export Citation Format

Share Document