Experimental and Numerical Investigation of Sweeping Jet Film Cooling

Author(s):  
Mohammad A. Hossain ◽  
Robin Prenter ◽  
Ryan K. Lundgreen ◽  
Ali Ameri ◽  
James W. Gregory ◽  
...  

A companion experimental and numerical study was conducted of the performance of a row of 5 sweeping jet (SJ) film cooling holes consisting of conventional curved fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of P/D = 8.5. Adiabatic film effectiveness (η), thermal field (θ), convective heat transfer coefficient (h) and discharge coefficient (CD) were measured at two different freestream turbulence levels (Tu = 0.4% and 10.1%) and four blowing ratios (M = 0.98, 1.97, 2.94 and 3.96) at a density ratio (DR) of 1.04 and hole Reynolds number of ReD = 2800. Adiabatic film effectiveness and thermal field data were also acquired for a baseline 777-shaped hole. The sweeping jet film cooling hole showed significant improvement in cooling effectiveness in the lateral direction due to the sweeping action of the fluidic oscillator. An unsteady RANS simulation was performed to evaluate the flow field at the exit of the hole. Time resolved flow fields revealed two alternating streamwise vortices at all blowing ratios. The sense of rotation of these alternating vortices is opposite to the traditional counter rotating vortex pair (CRVP) found in a ‘jet in crossflow’ and serves to spread the film coolant laterally.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Mohammad A. Hossain ◽  
Robin Prenter ◽  
Ryan K. Lundgreen ◽  
Ali Ameri ◽  
James W. Gregory ◽  
...  

A companion experimental and numerical study was conducted for the performance of a row of five sweeping jet (SJ) film cooling holes consisting of conventional curved fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of P/D = 8.5. Adiabatic film effectiveness (η), thermal field (θ), convective heat transfer coefficient (h), and discharge coefficient (CD) were measured at two different freestream turbulence levels (Tu = 0.4% and 10.1%) and four blowing ratios (M = 0.98, 1.97, 2.94, and 3.96) at a density ratio of 1.04 and hole Reynolds number of ReD = 2800. Adiabatic film effectiveness and thermal field data were also acquired for a baseline 777-shaped hole. The SJ film cooling hole showed significant improvement in cooling effectiveness in the lateral direction due to the sweeping action of the fluidic oscillator. An unsteady Reynolds-averaged Navier–Stokes (URANS) simulation was performed to evaluate the flow field at the exit of the hole. Time-resolved flow fields revealed two alternating streamwise vortices at all blowing ratios. The sense of rotation of these alternating vortices is opposite to the traditional counter-rotating vortex pair (CRVP) found in a “jet in crossflow” and serves to spread the film coolant laterally.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Baitao An ◽  
Jianjun Liu ◽  
Chao Zhang ◽  
Sijing Zhou

This paper presents a method to improve the film-cooling effectiveness of cylindrical holes. A short crescent-shaped block is placed at the downstream of a cylindrical cooling hole. The block shape is defined by a number of geometric parameters including block height, length and width, etc. The single row hole on a flat plate with inclination angle of 30 deg, pitch ratio of 3, and length-diameter ratio of 6.25 was chosen as the baseline test case. Film-cooling effectiveness for the cylindrical hole with or without the downstream short crescent-shaped block was measured by using the pressure sensitive paint (PSP) technique. The density ratio of coolant (argon) to mainstream air is 1.38. The blowing ratios vary from 0.5 to 1.25. The results showed that the lateral averaged cooling effectiveness is increased remarkably when the downstream block is present. The downstream short block allows the main body of the coolant jet to pass over the block top and to form a new down-wash vortex pair, which increases the coolant spread in the lateral direction. The effects of each geometrical parameter of the block on the film-cooling effectiveness were studied in detail.


Author(s):  
Todd A. Oliver ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Robert D. Moser ◽  
Gregory Laskowski

Results of a recent joint experimental and computational investigation of the flow through a plenum-fed 7-7-7 shaped film cooling hole are presented. In particular, we compare the measured adiabatic effectiveness and mean temperature against implicit large eddy simulation (iLES) for blowing ratio approximately 2, density ratio 1.6, and Reynolds number 6000. The results overall show reasonable agreement between the iLES and the experimental results for the adiabatic effectiveness and gross features of the mean temperature field. Notable discrepancies include the centerline adiabatic effectiveness near the hole, where the iLES under-predicts the measurements by Δη ≈ 0.05, and the near-wall temperature, where the simulation results show features not present in the measurements. After showing this comparison, the iLES results are used to examine features that were not measured in the experiments, including the in-hole flow and the dominant fluxes in the mean internal energy equation downstream of the hole. Key findings include that the flow near the entrance to the hole is highly turbulent and that there is a large region of backflow near the exit of the hole. Further, the well-known counter-rotating vortex pair downstream of the hole is observed. Finally, the typical gradient diffusion hypothesis for the Reynolds heat flux is evaluated and found to be incorrect.


1998 ◽  
Vol 120 (2) ◽  
pp. 327-336 ◽  
Author(s):  
K. Thole ◽  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

One viable option to improve cooling methods used for gas turbine blades is to optimize the geometry of the film-cooling hole. To optimize that geometry, effects of the hole geometry on the complex jet-in-crossflow interaction need to be understood. This paper presents a comparison of detailed flowfield measurements for three different single, scaled-up hole geometries, all at a blowing ratio and density ratio of unity. The hole geometries include a round hole, a hole with a laterally expanded exit, and a hole with a forward-laterally expanded exit. In addition to the flowfield measurements for expanded cooling hole geometries being unique to the literature, the testing facility used for these measurements was also unique in that both the external mainstream Mach number (Ma∞ = 0.25) and internal coolant supply Mach number (Mac = 0.3) were nearly matched. Results show that by expanding the exit of the cooling holes, both the penetration of the cooling jet and the intense shear regions are significantly reduced relative to a round hole. Although the peak turbulence level for all three hole geometries was nominally the same, the source of that turbulence was different. The peak turbulence level for both expanded holes was located at the exit of the cooling hole resulting from the expansion angle being too large. The peak turbulence level for the round hole was located downstream of the hole exit where the velocity gradients were very large.


Author(s):  
K. Thole ◽  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

One viable option to improve cooling methods used for gas turbine blades is to optimize the geometry of the film-cooling hole. To optimize that geometry, effects of the hole geometry on the complex jet-in-crossflow interaction need to be understood. This paper presents a comparison of detailed flowfield measurements for three different single, scaled-up, hole geometries all at a blowing ratio and density ratio of unity. The hole geometries include a round hole, a hole with a laterally expanded exit, and a hole with a forward-laterally expanded exit. In addition to the flowfield measurements for expanded cooling hole geometries being unique to the literature, the testing facility used for these measurements was also unique in that both the external mainstream Mach number (Ma∞ = 0.25) and internal coolant supply Mach number (Mac = 0.3) were nearly matched. Results show that by expanding the exit of the cooling holes, the penetration of the cooling jet as well as the intense shear regions are significantly reduced relative to a round hole. Although the peak turbulence levels for all three hole geometries was nominally the same, the source of that turbulence was different. The peak turbulence level for both expanded holes was located at the exit of the cooling hole resulting from the expansion angle being too large. The peak turbulence level for the round hole was located downstream of the hole exit where the velocity gradients were very large.


Author(s):  
Eiji Sakai ◽  
Toshihiko Takahashi

To understand film cooling flow fields on a gas turbine blade, this paper reports a series of large-eddy simulations of an inclined round jet issuing into a crossflow. Simulations were performed at constant momentum ratio conditions, IR = 0.25, 0.5, 1.0 and Reynolds number, Re = 15,300, based on the crossflow velocity and the film cooling hole diameter. Density ratio, DR, is changed from 1.0 to 2.0, and effects of the density ratio on vortical structures around the film cooling hole exit and film cooling effectiveness are investigated. The results showed that the vortical structure of the ejected jet drastically changes with varying density ratio. When the density ratio is comparatively small, hairpin vortices are formed downstream of the hole exit. On the contrary, when the density ratio is comparatively high, the formation of the hairpin vortices is suppressed and jet shear layer vortices are formed on side edges of the cooling jet. The jet shear layer vortices conveys the coolant air to the wall surface. As a result, higher film cooling effectiveness is obtained at comparatively high density ratio conditions compared to comparatively low density ratio conditions. Additional simulations were performed to discuss a possibility of an improvement in the film cooling effectiveness by controlling the formation of the jet shear layer vortices.


Author(s):  
David L. Rigby ◽  
James D. Heidmann

Calculations are presented demonstrating the effect of placing a delta vortex generator downstream of a film cooling hole. The effects of blowing ratio, density ratio, and spanwise pitch are included in the study. Flow over a flat plate with film cooling holes oriented at a 30 degree angle was investigated. The Reynolds numbers based on the freestream velocity and the hole diameter was 11,300. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-ω turbulence model. A structured multi-block grid was used with approximately one million cells, and average y+ values on the order of unity. Local and span averaged effectiveness are presented. Analysis and visualization of the flow are presented as well as a discussion on the mechanisms which contribute to the dramatic improvement in effectiveness. The results demonstrate that the delta vortex generator was able to annihilate the up-wash vortex pair produced by the film hole and produce a down-wash pair downstream.


Author(s):  
Tilman auf dem Kampe ◽  
Stefan Vo¨lker ◽  
Torsten Sa¨mel ◽  
Christian Heneka ◽  
Helge Ladisch ◽  
...  

An experimental and numerical study of the flow field and the downstream film cooling performance of cylindrical and diffuser shaped cooling holes is presented. The measurements were conducted on a flat plate with a single cooling hole with coolant ejected from a plenum. The flow field was investigated by means of 3D-PIV as well as 3D-LDV measurements, the downstream film cooling effectiveness by means of infrared thermography. Cylindrical and diffuser holes without lateral inclination have been examined, varying blowing ratio and density ratio as well as freestream turbulence levels. 3D-CFD simulations have been performed and validated along with the experimental efforts. The results, presented in terms of contour plots of the three normalized velocity components as well as adiabatic film cooling effectiveness, clearly show the flow structure of the film cooling jets and the differences brought about by the variation of hole geometry and flow parameters. The quantitative agreement between experiment and CFD was reasonable, with better agreement for cylindrical holes than for diffuser holes.


2021 ◽  
Author(s):  
Yuefeng Huang ◽  
Zihan Zhang ◽  
Kun He ◽  
Xin Yan

Abstract Effects of SDBD and DBD-VGs plasma actuations on film cooling performance of a plain wall were numerically investigated based on the RANS solutions and linearized body force model. With a user defined function (UDF), the plasma actuation forces were implemented into the momentum equations as the source terms in the commercial CFD solver ANSYS Fluent. With the experiment data and referenced numerical results, reliabilities of the linearized body force model and numerical methods were validated. At a range of dimensionless actuation strengths and frequencies, the film cooling effectiveness on the wall surface and flow structure development in the near-wall regions were analyzed and compared with the plasma-off case. The results show that both SDBD and DBD-VGs plasma actuations are beneficial for reducing the development of kidney vortex pair downstream of the cooling hole, thus significantly improving the film cooling effect on the wall surface. With SDBD plasma actuation, the streamwise velocity gradient in near-wall region is increased compared with the plasma-off case, resulting in delayed coolant flow lifting-off downstream of the cooling hole. However, with DBD-VGs plasma actuation, the development of anti-kidney vortex pair is intensified, which in turn weakens the development of kidney vortex pair and widens the coolant coverage on the wall surface along lateral direction. As the actuation strength and frequency increase, the film cooling effectiveness on the wall surface is enhanced along both streamwise and lateral directions. Compared with the plasma-off case, the area-averaged film cooling effectiveness for DBD-VGs plasma actuation case is increased by 331% at dimensionless actuation frequency of 2.5 and dimensionless actuation strength of 30, whereas for SDBD plasma actuation case the area-averaged film cooling effectiveness is only increased by 42.8% at dimensionless actuation frequency of 2.5 and dimensionless actuation strength of 60. With the same actuation parameters, compared against the SDBD case, a higher film cooling effectiveness is achieved on wall surface for the DBD-VGs plasma actuation case, and the coolant coverage along the lateral direction is significantly improved by DBD-VGs plasma actuation.


Author(s):  
Shane Haydt ◽  
Stephen Lynch

Shaped film cooling holes are a well-established cooling technique used in gas turbines to keep component metal temperatures in an acceptable range. One of the goals of film cooling is to reduce the driving temperature for convection at the wall, the success of which is generally represented by the film cooling adiabatic effectiveness. However, the introduction of a film cooling jet-in-crossflow, especially if it is oriented at a compound angle, can augment the convective heat transfer coefficient and dominate the flowfield. The present work aims to understand the effect that a compound angle has on the flowfield and adiabatic effectiveness of a shaped film cooling hole. Five orientations of the public 7-7-7 shaped film cooling hole were tested, from a streamwise oriented hole (0° compound angle) to a 60° compound angle hole, in increments of 15°. Additionally, two pitchwise spacings of P/D = 3 and 6 were tested to examine the effect of hole-to-hole interaction. All cases were tested at a density ratio of 1.2 and blowing ratios ranging from 1.0 to 4.0. Experimental results show that increasing compound angle leads to increased lateral spread of coolant, and enables higher laterally-averaged effectiveness at high blowing ratios. A smaller pitchwise spacing leads to more complete coverage of the endwall, and has higher laterally averaged effectiveness even when normalized by coverage ratio, suggesting that hole to hole interaction is important for compound angled holes. Steady RANS CFD was not able to capture the exact effectiveness levels, but did predict many of the observed trends. The lateral motion of the coolant jet was also quantified, both from the experimental data and the CFD prediction, and as expected, holes with a higher compound angle and higher blowing ratio have greater lateral motion, which generally also promotes hole-to-hole interaction.


Sign in / Sign up

Export Citation Format

Share Document