A Simple Contact Model for Simulating Tie Bolt Rotor Butt Joints With and Without Pilot Fits

Author(s):  
Aaron M. Rimpel

Turbomachinery rotors constructed from shaft components held together with a central tie bolt can be referred to as “tie bolt rotors”. At the interface between adjacent shaft sections, a contact stiffness behavior acts to reduce the effective bending stiffness compared to a solid shaft. Therefore, bending natural frequencies tend to be over-predicted, which is a design risk if critical speed margins are compromised. The current research analyzed the effect of contact stiffness in tie bolt rotor butt joints with and without pilot fits. Test articles were fabricated to represent different joint contact areas and pilot feature dimensions, and bending stiffness was indirectly observed by measurement of shaft natural frequencies. An empirical model was derived from a subset of the data, and the model was used to predict performance in all other test cases. The model proposed adding a small thickness layer of material with a reduced modulus of elasticity to simulate the reduction in stiffness by the axial face contact, which is a practical approach for simulation by finite element analysis (FEA) not previously proposed in the literature. The presence of the contact stiffness behavior was evident in all of the test data, which showed a stiffening effect with an increase in contact pressure. By contrast, the baseline FEA simulation predicted a softening behavior with increased compressive load. Implementing the empirically-derived contact stiffness model in simulations showed improved predictions for all experimental shaft configurations tested in this study.

Author(s):  
Aaron M. Rimpel ◽  
Matthew Leopard

Abstract Tie bolt rotors for centrifugal compressors comprise multiple shaft components that are held together by a single tie bolt. The axial connections of these rotors—including butt joints, Hirth couplings, and Curvic couplings—exhibit a contact stiffness effect, which tends to lower the shaft bending frequencies compared to geometrically identical monolithic shafts. If not accounted for in the design stage, shaft bending critical speed margins can be compromised after a rotor is built. A previous paper had investigated the effect of tie bolt force on the bending stiffness of stacked rotor assemblies with butt joint interfaces, both with and without pilot fits. This previous work derived an empirical contact stiffness model and developed a practical finite element modeling approach for simulating the axial contact surfaces, which was validated by predicting natural frequencies for several test rotor configurations. The present work built on these previous results by implementing the same contact stiffness modeling approach on a real tie bolt rotor system designed for a high pressure centrifugal compressor application. Each joint location included two axial contact faces, with contact pressures up to five times higher than previously modeled, and a locating pilot fit. The free-free natural frequencies for different amounts of tie bolt preload force were measured, and the frequencies exhibited the expected stiffening behavior with increasing preload. However, a discontinuity in the data trend indicated a step-change increase in the contact stiffness. It was shown that this was likely due to one or more of the contact faces becoming fully engaged only after sufficient tie bolt force was applied. Finally, a design calculation was presented that can be used to estimate whether contact stiffness effects may be ignored, which could simplify rotor analyses if adequate contact pressure is used.


Author(s):  
Aaron M. Rimpel ◽  
Matthew Leopard

Abstract Tie bolt rotors for centrifugal compressors comprise multiple shaft components that are held together by a single tie bolt. The axial connections of these rotors — including butt joints, Hirth couplings, and Curvic couplings — exhibit a contact stiffness effect, which tends to lower the shaft bending frequencies compared to geometrically identical monolithic shafts. If not accounted for in the design stage, shaft bending critical speed margins can be compromised after a rotor is built. A previous paper had investigated the effect of tie bolt force on the bending stiffness of stacked rotor assemblies with butt joint interfaces, both with and without pilot fits. This previous work derived an empirical contact stiffness model and developed a practical finite element modeling approach for simulating the axial contact surfaces, which was validated by predicting natural frequencies for several test rotor configurations. The present work built on these previous results by implementing the same contact stiffness modeling approach on a real tie bolt rotor system designed for a high pressure centrifugal compressor application. Each joint location included two axial contact faces, with contact pressures up to five times higher than previously modeled, and a locating pilot fit. The free-free natural frequencies for different amounts of tie bolt preload force were measured, and the frequencies exhibited the expected stiffening behavior with increasing preload. However, a discontinuity in the data trend indicated a step-change increase in the contact stiffness. It was shown that this was likely due to one or more of the contact faces becoming fully engaged only after sufficient tie bolt force was applied. Finally, a design calculation was presented that can be used to estimate whether contact stiffness effects may be ignored, which could simplify rotor analyses if adequate contact pressure is used.


Author(s):  
K. S. Narayana ◽  
R. T. Naik ◽  
R. C. Mouli ◽  
L. V. V. Gopala Rao ◽  
R. T. Babu Naik

The work presents the Finite element study of the effect of elliptical chords on the static and dynamic strength of tubular T-joints using ANSYS. Two different geometry configurations of the T-joints have been used, namely Type-1 and Type-2. An elastic analysis has been considered. The Static loading conditions used are: axial load, compressive load, In-plane bending (IPB) and Out-plane bending (OPB). The natural frequencies analysis (dynamic loading condition) has also been carried out. The geometry configurations of the T-joints have been used, vertical tubes are called brace and horizontal tubes are called chords. The joint consists of brace joined perpendicular to the circular chord. In this case the ends of the chord are held fixed. The material used is mild steel. Using ANSYS, finite element modeling and analysis of T-joint has been done under the aforementioned loading cases. It is one of the most powerful methods in use but in many cases it is an expensive analysis especially due to elastic–plastic and creep problems. Usually, three dimensional solid elements or shell elements or the combination of two types of elements are used for generating the tubular joints mesh. In tubular joints, usually the fluid induced vibrations cause the joint to fail under resonance. Therefore the natural frequencies analysis is also an important issue here. Generally the empirical results are required as guide or comparison tool for finite element investigation. It is an effective way to obtain confidence in the results derived. Shell elements have been used to model the assembled geometry. Finite element ANSYS results have been validated with the LUSAS FEA and experimental results, that is within the experimentation error limit of ten percentage.


Author(s):  
Yuqiao Zheng ◽  
Fugang Dong ◽  
Huquan Guo ◽  
Bingxi Lu ◽  
Zhengwen He

The study obtains a methodology for the bionic design of the tower for wind turbines. To verify the rationality of the biological selection, the Analytic Hierarchy Procedure (AHP) is applied to calculate the similarity between the bamboo and the tower. Creatively, a bionic bamboo tower (BBT) is presented, which is equipped with four reinforcement ribs and five flanges. Further, finite element analysis is employed to comparatively investigate the performance of the BBT and the original tower (OT) in the static and dynamic. Through the investigation, it is suggested that the maximum deformation and maximum stress can be reduced by 5.93 and 13.75% of the BBT. Moreover, this approach results in 3% and 1.1% increase respectively in the First two natural frequencies and overall stability.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1459
Author(s):  
Varshitha Yashvanth ◽  
Sazzadur Chowdhury

This paper presents a novel technique to reduce acoustic crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. The technique involves fabricating a thin layer of diisocyanate enhanced silica aerogel on the top surface of a CMUT array. The silica aerogel layer introduces a highly nanoporous permeable layer to reduce the intensity of the Scholte wave at the CMUT-fluid interface. 3D finite element analysis (FEA) simulation in COMSOL shows that the developed technique can provide a 31.5% improvement in crosstalk reduction for the first neighboring element in a 7.5 MHz CMUT array. The average improvement of crosstalk level over the −6 dB fractional bandwidth was 22.1%, which is approximately 5 dB lower than that without an aerogel layer. The results are in excellent agreement with published experimental results to validate the efficacy of the new technique.


2021 ◽  
Vol 11 (5) ◽  
pp. 2379
Author(s):  
Jeong-Hyeon Kim ◽  
Doo-Hwan Park ◽  
Seul-Kee Kim ◽  
Myung-Sung Kim ◽  
Jae-Myung Lee

The curved plate has been extensively used as a structural member in many industrial fields, especially the shipbuilding industry. The present study investigated the ultimate strength and collapse behavior of the simply supported curved plate under a longitudinal compressive load. To do this, experimental apparatuses for evaluating the buckling collapse test of the curved plates was developed. Then, a series of buckling collapse experiments was carried out by considering the flank angle, slenderness ratio, and aspect ratio of plates. To examine the fundamental buckling and collapse behavior of the curved plate, elastoplastic large deflection analysis was performed using the commercial finite element analysis program. On the basis of both the experimental and FE analysis, the effects of the flank angle, slenderness ratio, and aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. Finally, the empirical design formula for predicting the ultimate strength of curved plates was derived. The proposed empirical formula is a good indicator for estimating the behavior of the curved plate.


2014 ◽  
Vol 658 ◽  
pp. 261-268
Author(s):  
Jean Louis Ntakpe ◽  
Gilbert Rainer Gillich ◽  
Florian Muntean ◽  
Zeno Iosif Praisach ◽  
Peter Lorenz

This paper presents a novel non-destructive method to locate and size damages in frame structures, performed by examining and interpreting changes in measured vibration response. The method bases on a relation, prior contrived by the authors, between the strain energy distribution in the structure for the transversal vibration modes and the modal changes (in terms of natural frequencies) due to damage. Using this relation a damage location indicator DLI was derived, which permits to locate cracks in spatial structures. In this paper an L-frame is considered for proving the applicability of this method. First the mathematical expressions for the modes shapes and their derivatives were determined and simulation result compared with that obtained by finite element analysis. Afterwards patterns characterizing damage locations were derived and compared with measurement results on the real structure; the DLI permitted accurate localization of any crack placed in the two structural elements.


2003 ◽  
Vol 125 (1) ◽  
pp. 24-30 ◽  
Author(s):  
C. Pany ◽  
S. Parthan

Propagation of waves along the axis of the cylindrically curved panels of infinite length, supported at regular intervals is considered in this paper to determine their natural frequencies in bending vibration. Two approximate methods of analysis are presented. In the first, bending deflections in the form of beam functions and sinusoidal modes are used to obtain the propagation constant curves. In the second method high precision triangular finite elements is used combined with a wave approach to determine the natural frequencies. It is shown that by this approach the order of the resulting matrices in the FEM is considerably reduced leading to a significant decrease in computational effect. Curves of propagation constant versus natural frequencies have been obtained for axial wave propagation of a multi supported curved panel of infinite length. From these curves, frequencies of a finite multi supported curved panel of k segments may be obtained by simply reading off the frequencies corresponding to jπ/kj=1,2…k. Bounding frequencies and bounding modes of the multi supported curved panels have been identified. It reveals that the bounding modes are similar to periodic flat panel case. Wherever possible the numerical results have been compared with those obtained independently from finite element analysis and/or results available in the literature.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 94
Author(s):  
T Subramani ◽  
V Sukumar

Castellated beam is escalation in vertical bending stiffness, simple carrier provision and appealing look. But one effect of presence of Web beginning will be the development of varied local results. Castellated beams are metal beams with web openings and that they benefit its benefit because of its multiplied depth of phase without any extra weight. To analyze the conduct of castellated metal beams having an I-shaped go-element. Analysis is carried from beam with two factor load and genuinely supported assist condition.  


Sign in / Sign up

Export Citation Format

Share Document