The Effect of Stage-Diffuser Interaction on the Aerodynamic Performance and Design of LP Steam Turbine Exhaust Systems

Author(s):  
Bowen Ding ◽  
Liping Xu ◽  
Jiandao Yang ◽  
Rui Yang ◽  
Yuejin Dai

Modern large steam turbines for power generation are required to operate much more flexibly than ever before, due to the increasing use of intermittent renewable energy sources such as solar and wind. This has posed great challenges to the design of LP steam turbine exhaust systems, which are critical to recovering the leaving energy that is otherwise lost. In previous studies, the design had been focused on the exhaust diffuser with or without the collector. Although the interaction between the last stage and the exhaust hood has been identified for a long time, little attention has been paid to the last stage blading in the exhaust system’s design process, when the machine frequently operates at part-load conditions. This study focuses on the design of LP exhaust systems considering both the last stage and the exhaust diffuser, over a wide operating range. A 1/10th scale air test rig was built to validate the CFD tool for flow conditions representative of an actual machine at part-load conditions, characterised by highly swirling flows entering the diffuser. A numerical parametric study was performed to investigate the effect of both the diffuser geometry variation and restaggering the last stage rotor blades. Restaggering the rotor blades was found to be an effective way to control the level of leaving energy, as well as the flow conditions at the diffuser inlet, which influence the diffuser’s capability to recover the leaving energy. The benefits from diffuser resizing and rotor blade restaggering were shown to be relatively independent of each other, which suggests the two components can be designed separately. Last, the potentials of performance improvement by considering both the last stage rotor restaggering and the diffuser resizing were demonstrated by an exemplary design, which predicted an increase in the last stage power output of at least 1.5% for a typical 1000MW plant that mostly operates at part-load conditions.

Author(s):  
Christopher Fuhrer ◽  
Marius Grübel ◽  
Damian M. Vogt ◽  
Paul Petrie-Repar

Turbine blade flutter is a concern for the manufacturers of steam turbines. Typically, the length of last stage blades of large steam turbines is over one meter. These long blades are susceptible to flutter because of their low structural frequency and supersonic tip speeds with oblique shocks and their reflections. Although steam condensation has usually occurred by the last stage, ideal gas is mostly assumed when performing flutter analysis for steam turbines. The results of a flutter analysis of a 2D steam turbine test case which examine the influence of non-equilibrium wet steam are presented. The geometry and flow conditions of the test case are supposed to be similar to the flow near the tip in a steam turbine as this is where most of the unsteady aerodynamic work contributing to flutter is done. The unsteady flow simulations required for the flutter analysis are performed by ANSYS CFX. Three fluid models are examined: ideal gas, equilibrium wet steam (EQS) and non-equilibrium wet steam (NES), of which NES reflects the reality most. Previous studies have shown that a good agreement between ideal gas and EQS simulations can be achieved if the prescribed ratio of specific heats is equal to the equilibrium polytropic index of the wet steam flow through the turbine. In this paper the results of a flutter analysis are presented for the 2D test case at flow conditions with wet steam at the inlet. The investigated plunge mode normal to chord is similar to a bending mode around the turbine axis for a freestanding blade in 3D. The influence of the overall wetness fraction and the size of the water droplets at the inlet are examined. The results show an increase of aerodynamic damping for all investigated interblade phase angles with a reduction of droplet size. The influence of the wetness fraction is in comparison of less importance.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

Abstract Most of the world’s power is produced by large steam turbines using fossil fuel, nuclear and geothermal energy. The LP exhaust hoods of these turbines are known to contribute significantly to the losses within the turbine, hence a minor improvement in their performance, which results in a lower backpressure and thus higher enthalpy drop for the steam turbine, will give a considerable benefit in terms of fuel efficiency. Understanding the flow field and the loss mechanisms within the exhaust hood of LP steam turbines is key to developing better optimized exhaust hood systems. A detailed analysis of loss generation within the exhaust hood was done by the authors [1]. It was found that most losses occur at the upper hood and are caused by the swirling flows, which mostly start at the diffuser outlet, especially for the top diffuser inlet sector flows that have a complex path to the condenser. The authors further numerically investigated the influence of hood height variation on performance of an LP turbine exhaust hood [2], which further contributed to the knowledge of the loss mechanisms. With the loss mechanisms in exhaust hoods reasonably well understood, flow deflection at the upper hood is investigated in the current paper. The deflection is aimed at minimizing the intensity of the vortices formed thus reducing the exhaust losses. The deflector configurations analyzed are modifications of the walls of the reference configuration’s outer casing. The numerical models of the reference configuration which are based on a scaled axial-radial diffuser test rig operated by ITSM have already been validated by the authors at design and overload operating conditions and three tip jet Mach numbers (0, 0.4 and 1.2)[1]. Deflector configurations investigated are found to re-direct the flow at the upper hood and minimize the intensity of the swirling flows hence leading to improvement in performance of LP steam turbine exhaust hoods. The best performing deflector configuration is found to give a considerable improvement in performance of 20% at design load and 40% at overload both at tip jet Mach number of 0.4 (corresponding to shrouded last stage blades). At design load and tip jet Mach number of 1.2 (corresponding to unshrouded last stage blades), the improvement is found to be moderate. About 7% performance increase is observed.


Author(s):  
N. Lückemeyer ◽  
F. Qin

Recent developments like the significant introduction of renewable energy sources to the electricity networks worldwide have led to more frequent and extended operation of fossil power plants in part load conditions. As a result the typical load spectrum of large steam turbines used for electricity generation has changed over the last years and will continue to do so. A number of papers has already been published on how to optimize the water-steam cycle and the steam turbine from a thermodynamical and aero-dynamical point of view for this new load regime in order to improve the average efficiency. But the changed load regime also poses a challenge for the mechanical design and structural integrity assessment of steam turbines. Reason for this is that the rated conditions are not necessarily the most challenging boundary conditions and therefore not necessarily a suitable, conservative envelope for all other load cases for mechanical design. Pressures decrease, but steam temperatures in part loads can increase and heat transfer coefficients and the influence of radiation on the component temperatures change. With an increasing demand for and a wider range of part load operation it for this reason becomes more important than ever to consider these load cases in the mechanical design. This paper uses a large, double-flow intermediate pressure steam turbine as an example to investigate the impact of extended part load operation on the design. Both an analytical model and finite element calculations are used to compare from a structural integrity point of view a low part-load load case and the rated load case and to evaluate the significance of heat radiation.


Author(s):  
Hiteshkumar Mistry ◽  
Manisekaran Santhanakrishnan ◽  
John Liu ◽  
Alexander Stein ◽  
Subhrajit Dey ◽  
...  

Modern steam turbines often utilize very long last stage buckets (LSB’s) in their low-pressure sections to improve efficiency. Some of these LSB’s can range in the order of 5 feet long. These long buckets (aka “blades”) are typically supported at their tip by a tip-shroud and near the mid span by a part span shroud or part span connector (PSC). The PSC is a structural element that connects all the rotor blades, generally at the mid span. It is primarily designed to address various structural issues, often with little attention to its aerodynamic effects. The objective of the current work is to quantify the impact of PSC on aerodynamic performance of the last stage of a LP steam turbine by using detailed CFD analyses. A commercial CFD solver, ANSYS CFX™, is used to solve the last stage domain by setting steam as the working fluid with linear variation of specific heat ratio with temperature. A tetrahedral grid with prismatic layers near the solid walls is generated using ANSYS WORKBENCH™. The results show a cylindrical PSC reduces the efficiency of the last stage by 0.32 pts, of which 0.20 pts is due to the fillet attaching the PSC to the blade. The results also show insignificant interaction of the PSC with the bucket tip aerodynamics. The work presents a detailed flow field analysis and shows the impact of PSC geometry on the aerodynamic performance of last stage of steam turbine. Present work is useful to turbine designer for trade-off studies of performance and reliability of LSB design with or without PSC.


2021 ◽  
Author(s):  
Ilgit Ercan ◽  
Damian M. Vogt

Abstract Rotating instability (RI) in steam turbines is a phenomenon occurring during operation at very low volume flow conditions. Whereas RI is well-known in compressors, it is rather uncommon in turbines, where it is limited to the last stages of low-pressure steam turbines. The phenomenon has been studied numerically by means of viscous 3D CFD simulations employing mainly URANS equations. Given the possible difficulties to accurately predict heavily separated flows using such methods, this paper deals with the question whether the more sophisticated Improved Delayed Detached Eddy Simulation (iDDES) model is applicable in an industrial environment and whether it is capable of capturing the complex unsteady flow physics in a more realistic manner. For this purpose, the commercial CFD solver STAR-CCM+ is employed. A three-stage low-pressure model steam turbine featuring a non-axisymmetric inlet and an axial-radial diffuser is used as a test object. In order to capture the asymmetry, the model spans the full annulus and comprises the inlet section, all three stages, the diffuser as well as the exhaust hood. URANS and iDDES simulations have been performed at various low-volume flow part-load operating points and compared to test data. Unsteady pressure fluctuations at the casing as well as time-resolved probe traverse data have been used to validate the simulations. It is found that both models capture the overall flow physics well and that the iDDES model is superior at the most extreme part-load operating condition. In addition to the model accuracy and applicability of the CFD tool used, the paper discusses the challenges encountered during simulation setup as well as during initialization.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Andreas Rehnsch

Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood, such as baffles or ribs. To assess the influence of supporting ribs on the vibration behavior of the last stage rotor blades, tests with two rib configurations were performed in a single stage LP model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) at the University of Stuttgart, Germany. At design load and overload operating conditions no significant change in blade vibration amplitudes is observed in case of a supporting rib in close vicinity to the rotor blades compared to the reference case without installations. However, at part load operating conditions a remarkable reduction in blade amplitudes is found rather unexpectedly. The present work shows that changes in the pattern and the frequency content of the flow within the diffuser, caused by the interaction between supporting rib and steam flow is evidently responsible for this.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


Author(s):  
Eric Liese

A dynamic process model of a steam turbine, including partial arc admission operation, is presented. Models were made for the first stage and last stage, with the middle stages presently assumed to have a constant pressure ratio and efficiency. A condenser model is also presented. The paper discusses the function and importance of the steam turbines entrance design and the first stage. The results for steam turbines with a partial arc entrance are shown, and compare well with experimental data available in the literature, in particular, the “valve loop” behavior as the steam flow rate is reduced. This is important to model correctly since it significantly influences the downstream state variables of the steam, and thus the characteristic of the entire steam turbine, e.g., state conditions at extractions, overall turbine flow, and condenser behavior. The importance of the last stage (the stage just upstream of the condenser) in determining the overall flowrate and exhaust conditions to the condenser is described and shown via results.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


Sign in / Sign up

Export Citation Format

Share Document