Numerical Study of Blade Tip Cooling at High Speed With Tip and Pressure-Side Coolant Injections

Author(s):  
Zhihua Zhou ◽  
Songtao Wang ◽  
Shaowen Chen

The tip clearance between turbine blade and stationary casing leads to the exposure of blade tip to high temperature gas and contributes to a high thermal load in this region. Then it is necessary to perform cooling on the blade tip. Moreover, the tip leakage flow in a high speed brings complex aerothermal conditions to the blade tip. The blade tip film cooling on the transonic squealer tip is investigated in this research. The effects of tip and pressure-side coolant injections on the blade tip heat transfer are discussed. And the influences of total pressure ratio of coolant to main flow and endwall moving on the film cooling are considered. Firstly, the reliability of a commercial CFD code with different turbulence models was first validated by contrasting with the experimental results. The heat flux and isentropic Ma number predicted with the BSL k-ω model shows a better agreement with the test data. Then the mesh independency study was performed. The mesh with tip and pressure-side injection hole is generated by in-house code. For the tip without film cooling at outlet Mach number of 0.96, the squealer tip shows a high heat transfer at front of the tip cavity floor caused by the impingement of tip leakage flow, besides the suction-side rim has high heat transfer coefficient. With the tip coolant injection, the tip coolant is pushed towards the cavity pressure-side and provides better coverage in this region. At the front of cavity floor near suction-side, there is almost no coolant coverage then it shows little cooling effects. The coolant discharges from the tip over the suction-side rim thereby the heat transfer near the trailing edge is less affected by the tip coolant injection. With the pressure-side near tip film cooling, the coolant injection shows high film-cooling effectiveness at low coolant stagnation pressure and lift off blade surface at high coolant stagnation pressure. The endwall motion increases the total heat load of the blade tip by increase heat load at cavity floor and suction-side near tip region and the reduces film-cooling effectiveness.

Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

This is the first in a two-part series of an experimental film cooling study conducted on the tip of a turbine blade with a blade rotation speed of 1200 RPM. In this part of the study, the coolant is injected from the blade tip and pressure side (PS) holes, and the effect of the blowing ratio on the heat transfer coefficient and film cooling effectiveness of the blade tip is investigated. The blade has a tip clearance of 1.7% of the blade span and consists of a cut back squealer rim, two cylindrical tip holes and six shaped pressure side holes. The stator-rotor-stator test section is housed in a closed loop wind tunnel that allows for the performance of transient heat transfer tests. Measurements of the heat transfer coefficient and film cooling effectiveness are done on the blade tip using liquid crystal thermography. These measurements are reported for the no coolant case and for blowing ratios of 1.0, 1.5, 2.0, 3.0 and 4.0. The heat transfer results for the no coolant injection show a region of high heat transfer on the blade tip near the blade leading edge region as the incident flow impinges on that region. This region of high heat transfer extends and stretches on the tip as more coolant is introduced through the tip holes at higher blowing ratios. The cooling results show that increasing the blowing ratio increases the film cooling effectiveness. The tip film cooling profile is such that the tip coolant is pushed towards the blade suction side thereby providing better coverage in that region. The shift in coolant flow profile towards the blade suction side as opposed to the pressure side in stationary studies can primarily be attributed to the effects of the blade relative motion.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Jin Wang ◽  
Bengt Sundén ◽  
Min Zeng ◽  
Qiu-wang Wang

Three-dimensional simulations of the squealer tip on the GE-E3 blade with eight film cooling holes were carried out. The effect of the rim width and the blowing ratio on the blade tip flow and cooling performance were revealed. Numerical simulations were performed to predict the leakage flow and the tip heat transfer with the k–ɛ model. For the squealer tip, the depth of the cavity is fixed but the rim width varies to form a wide cavity, which can decrease the coolant momentum and the tip leakage flow velocity. This cavity contributes to the improvement of the cooling effect in the tip zone. To investigate the influence on the tip heat transfer by the rim width, numerical simulations were performed as a two-part study: (1) unequal rim width study on the pressure side and the suction side and (2) equal rim width study with rim widths of 0.58%, 1.16%, and 1.74% of the axial chord (0.5 mm, 1 mm, and 1.5 mm, respectively) on both the pressure side rim and the suction side rim. With different rim widths, the effect of different global blowing ratios, i.e., M = 0.5, 1.0 and 1.5, was investigated. It is found that the total heat transfer rate is increasing and the heat transfer rates on the rim surface (RS) rapidly ascend with increasing rim width.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

An experimental study of film cooling is conducted on the tip of a turbine blade with a blade rotation speed of 1200 rpm. The coolant is injected from the blade tip and pressure side (PS) holes, and the effect of the blowing ratio on the heat transfer coefficient and film cooling effectiveness of the blade tip is investigated. The blade has a tip clearance of 1.7% of the blade span and consists of a cut back squealer rim, two cylindrical tip holes, and six shaped PS holes. The stator–rotor–stator test section is housed in a closed loop wind tunnel that allows for the performance of transient heat transfer tests. Measurements of the heat transfer coefficient and film cooling effectiveness are done on the blade tip using liquid crystal thermography. These measurements are reported for the no coolant case and for blowing ratios of 1.0, 1.5, 2.0, 3.0, and 4.0. The heat transfer result for the no coolant injection shows a region of high heat transfer on the blade tip near the blade leading edge region as the incident flow impinges on that region. This region of high heat transfer extends and stretches on the tip as more coolant is introduced through the tip holes at higher blowing ratios. The cooling results show that increasing the blowing ratio increases the film cooling effectiveness. The cooling effectiveness signatures indicate that the tip coolant is pushed toward the blade suction side thereby providing better coverage in that region. This shift in coolant flow toward the blade suction side, as opposed to the PS in stationary studies, can primarily be attributed to the effects of the blade relative motion.


Author(s):  
Weijie Wang ◽  
Shaopeng Lu ◽  
Hongmei Jiang ◽  
Qiusheng Deng ◽  
Jinfang Teng ◽  
...  

Numerical simulations are conducted to present the aerothermal performance of a turbine blade tip with cutback squealer rim. Two different tip clearance heights (0.5%, 1.0% of the blade span) and three different cavity depths (2.0%, 3.0%, and 6.0% of the blade span) are investigated. The results show that a high heat transfer coefficient (HTC) strip on the cavity floor appears near the suction side. It extends with the increase of tip clearance height and moves towards the suction side with the increase of cavity depth. The cutback region near the trailing edge has a high HTC value due to the flush of over-tip leakage flow. High HTC region shrinks to the trailing edge with the increase of cavity depth since there is more accumulated flow in the cavity for larger cavity depth. For small tip clearance cases, high HTC distribution appears on the pressure side rim. However, high HTC distribution is observed on suction side rim for large tip clearance height. This is mainly caused by the flow separation and reattachment on the squealer rims.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

The blade tip is one area that experiences high heat transfer due to the strong tip leakage flow. One of the common methods is to apply film cooling on tip to reduce the heat load. To get a better film cooling, different arrangements of film holes on the plane and squealer tips have been numerically studied with the Reynolds stress turbulence model and non-equilibrium wall function. The present study investigated three types of film-hole arrangements: 1) the camber arrangement: the film cooling holes are located on the mid-camber line of tips, 2) the upstream arrangement: the film holes are located upstream of the tip leakage flow and high heat transfer region, and 3) two rows arrangement: the camber and upstream arrangements are combined under the same amount of coolant. In addition, three different blowing ratios (M = 0.5, 1 and 1.5), are evaluated for film cooling effectiveness and heat transfer coefficient. The predicted heat transfer coefficients are in good agreement with the experimental data, but the film cooling effectiveness is over predicted on the blade tips.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

The detailed distributions of heat transfer coefficient and film cooling effectiveness on a gas turbine blade tip were measured using a hue detection based transient liquid crystal technique. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on cascade exit velocity and axial chord length was 1.1 × 106 and the total turning angle of the blade was 97.7°. The overall pressure ratio was 1.32 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The blade model was equipped with a single row of film cooling holes at both the tip portion along the camber line and near the tip region of the pressure-side. All measurements were made at the three different tip gap clearances of 1%, 1.5%, and 2.5% of blade span and the three blowing ratios of 0.5, 1.0, and 2.0. Results showed that, in general, heat transfer coefficient and film effectiveness increased with increasing tip gap clearance. As blowing ratio increased, heat transfer coefficient decreased, while film effectiveness increased. Results also showed that adding pressure-side coolant injection would further decrease blade tip heat transfer coefficient but increase film effectiveness.


Author(s):  
E. M. Hohlfeld ◽  
J. R. Christophel ◽  
E. L. Couch ◽  
K. A. Thole

The clearance gap between the tip of a turbine blade and its associated shroud provides a flow path for leakage from the pressure side of the blade to the suction side. The tip region is one area that experiences high heat transfer and, as such, can be the determining factor for blade life. One method for reducing blade tip heat transfer is to use cooler fluid from the compressor, that exits from relatively large dirt purge holes placed in the tip, for cooling purposes. Dirt purge holes are typically manufactured in the blade tip to extract dirt from the coolant flow through centrifugal forces such that these dirt particles do not block smaller diameter film-cooling holes. This paper discusses the results of numerous computational simulations of cooling injection from dirt purge holes along the tip of a turbine blade. Some comparisons are also made to experimental results in which a properly scaled-up blade geometry (12X) was used to form a two-passage linear cascade. Computational results indicate that the cooling achieved through the dirt purge injection from the blade tip is dependent on the gap size as well as the blowing ratio. For a small tip gap (0.54% of the span) the flow exiting the dirt purge holes act as a blockage for the leakage flow across the gap. As the blowing ratio is increased for a large tip gap (1.63% of the span), the tip cooling increases only slightly while the cooling to the shroud increases significantly.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer, and film cooling effectiveness of advanced high pressure turbine blade tips and endwalls. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with leading edge and trailing edge cutouts. Both blade tip configurations have pressure side film cooling and cooling air extraction through dust holes, which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9×105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aerothermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the midchord region. However, on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.


Author(s):  
Chunyi Yao ◽  
Zheng Zhang ◽  
Bo-lun Zhang ◽  
Hui Ren Zhu ◽  
Cun Liang Liu

Abstract The objective of this experimental investigation was to determine the cooling performance of a fully cooled vane with 18 rows of cylinder cooling holes. The exit Reynolds number in the wind tunnel normalized by the true chord was 500,000 with a turbulence intensity of 15%. The film cooling effectiveness and heat transfer coefficient distribution were obtained by the transient liquid crystal technology, three mass flow ratios (MFR=7.0%, 9.9%, 11%) and two density ratios (DR=1.0, 1.5) were tested. The results show that the film cooling effectiveness distribution on the suction side is more uniform and the coolant injection trajectory is much longer than that on the pressure side. As the density ratio increasing to 1.5, the more laterally uniform film cooling effectiveness contour on the pressure side is observed and the spatially averaged film cooling effectiveness is increased by 11%∼43%. For the MFR=7.0%, the coolant injection with low momentum thickens the boundary layer and reduces the heat transfer coefficient in the mid-chord region of the pressure side. Both the increased mass flow ratio and decreased density ratio result in a higher heat transfer coefficient, while do not alter the distribution trend. By calculating the heat flux ratio, the reduction in the heat flux at DR=1.5 is found to be within 20% in most areas than that of DR=1.0 on the vane surface.


Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

In this paper, blade-tip cooling is investigated with coolant injection from the shroud alone and a combination of shroud coolant injection and tip cooling. The blade rotates at a nominal speed of 1200 RPM, and consists of a cut back squealer tip with a tip clearance of 1.7% of the blade span. The blade consists of tip holes and pressure side shaped holes, while the shroud has an array of angled holes and a circumferential slot upstream of the rotor section. Different combinations of the three cooling configurations are utilized to study the effectiveness of shroud cooling as a complementary method of cooling the blade tip. The measurements are done using liquid crystal thermography. Blowing ratios of 0.5, 1.0, 2.0, 3.0 and 4.0 are studied for shroud slot cooling and blowing ratios of 1.0, 2.0, 3.0, 4.0 and 5.0 are studied for shroud hole cooling. For cases with coolant injection from the tip, the blowing ratios used are 1.0, 2.0, 3.0 and 4.0. The results show an increase in film cooling effectiveness with increasing blowing ratio for shroud hole cooling. The increased effectiveness from shroud hole cooling is concentrated mainly in the tip-region below the shroud holes and towards the blade suction side and the suction side squealer rim. Slot cooling injection results in increased effectiveness on the blade tip near the blade leading edge up to a maximum blowing ratio, after which the cooling effectiveness decreases with increasing blowing ratio. The combination of the different cooling methods results in better overall cooling coverage of the blade tip with the shroud hole and blade tip cooling combination being the most effective. The level of coolant protection is strongly dependent on the blowing ratio and combination of blowing ratios.


Sign in / Sign up

Export Citation Format

Share Document