An Analysis of the Secondary Flow Around a Tandem Blade Under the Presence of a Tip Gap in a High-Speed Linear Compressor Cascade

Author(s):  
Liesbeth Konrath ◽  
Dieter Peitsch ◽  
Alexander Heinrich

Abstract Tandem blades have often been under investigation, experimentally as well as numerically, but most studies have been about tandem blade stators without tip gap. This work analyzes the influence of a tip gap on the flow field of a tandem blade for engine core compressors. Experiments have been conducted in a high-speed linear compressor cascade on a tandem and a reference geometry. The flow is analyzed using five-hole probe measurements in the wake of the blades and oil flow visualization to show the near surface stream lines. First, the results for design conditions (tandem and conventional blade) are compared to measurements on corresponding blades without tip gap. Similarities and differences in the flow topology due to the tip clearance are analyzed, showing that the introduction of the tip clearance has a similar influence on the loss and turning development for the tandem and the conventional blade. The tandem blade features two tip clearance vortices with a complex flow interaction and the possible formation of a third counter-rotating vortex between them. An incidence variation from 0° to 5° for both blades indicate at first a similar behavior. After a separation of the flow field into gap and non-gap half it becomes apparent that the tandem blade shows higher losses on the gap side, while featuring a close-to-constant behavior on the non-gap side. Further investigation of the flow on the gap side shows indicators of the front blade exhibiting tip clearance vortex break down, while the rear blade seems unaffected.

2021 ◽  
pp. 1-20
Author(s):  
Liesbeth Konrath ◽  
Dieter Peitsch ◽  
Alexander Heinrich

Abstract Tandem blades have often been under investigation, experimentally as well as numerically, but most studies have been about tandem blade stators without tip gap. This work analyzes the influence of a tip gap on the flow field of a tandem blade for engine core compressors. Experiments have been conducted in a high-speed linear compressor cascade on a tandem and a reference geometry. The flow is analyzed using five-hole probe measurements in the wake of the blades and oil flow visualization to show the near surface stream lines. First, the results for design conditions (tandem and conventional blade) are compared to measurements on corresponding blades without tip gap. Similarities and differences in the flow topology due to the tip clearance are analyzed, showing that the introduction of the tip clearance has a similar influence on the loss and turning development for the tandem and the conventional blade. The tandem blade features two tip clearance vortices with a complex flow interaction and the possible formation of a third counter-rotating vortex between them. An incidence variation from 0deg to 5deg for both blades indicates at first a similar behavior. After a separation of the flow field into gap and non-gap half it becomes apparent that the tandem blade shows higher losses on the gap side, while featuring a close-to-constant behavior on the non-gap side. Further investigation of the flow on the gap side shows indicators of the front blade exhibiting tip clearance vortex break down.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


1993 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0 and 3.25 percent of chord at design and off-design flow conditions. Data, velocity and pressures, are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


1994 ◽  
Author(s):  
Shun Kang ◽  
Charles Hirsch

A Navier-Stokes solver is applied to investigate the 3D viscous flow in a low speed linear compressor cascade with tip clearance at design and off-design conditions with two different meshes. The algebraic turbulence model of Baldwin-Lomax is used for closure. Relative motion between the blades and wall is simulated for one flow coefficient. Comparisons with experimental data, including flow structure, static and total pressures, velocity profiles, secondary flows and vorticity, are presented for the stationary wall case. It is shown that the code predicts well the flow structure observed in experiments and shows the details of the tip leakage flow and the leading edge horseshoe vortex.


Author(s):  
Julija Peter ◽  
David Konstantin Tilcher ◽  
Robert Meyer ◽  
Paul Uwe Thamsen

The flow field inside a compressor is characterized by highly unsteady flow effects. Consequently, the performance of a compressor is significantly influenced by the complex flow field. Especially at off-design conditions, flow separation and tip clearance flow cause vortex structures and thus increased losses. The objective of this paper is to give an insight into the effect mechanism of the movable stator vanes as an adaptive system to affect unsteady flow conditions. The experiments were conducted in a stator cascade in a water channel at a Reynolds number of Re = 500 000. Inlet guide vanes with movable flaps were used to simulate the periodic variation of the inlet flow angle. As parameters, the mean stagger angle of the stator cascade as well as the phase shift between the sinusoidal movement of the stator and the inlet guide cascade were varied. By using the optical measurement technique High-Speed Particle Image Velocimetry (HS-PIV), the flow fields upstream and downstream of the stator cascade were captured. Overall, the results revealed that the loss coefficient is strongly dependent on the phase shift between the inlet guide cascade and the stator cascade. Using certain phase shifts, a reduction in losses of up to 20% was achieved by the movable stator cascade.


Author(s):  
Saeed A. El-Shahat ◽  
Hesham M. El-Batsh ◽  
Ali M. A. Attia ◽  
Guojun Li ◽  
Lei Fu

Abstract This paper presents a complete study about three-dimensional (3-D) flow field development in a linear compressor cascade where flow field in the blade passage has been studied experimentally as well as numerically. In the experimental work, a linear compressor cascade test section was installed in an open loop wind tunnel. The experimental data was acquired for a Reynolds number of 2.98 × 105 based on the blade chord and the inlet flow conditions. The flow field characteristics in blade passage including 3-D flow velocity and velocity magnitude have been measured by using calibrated five and seven-hole pressure probes connected to ATX sensor module data acquisition system (DAQ). To investigate flow development in the blade passage, velocity coefficient through streamwise planes has been calculated from the measured data. The computational fluid dynamics (CFD) study of the flow field was performed to gain a better understanding of the flow features. Present computational study was first validated with previous experimental and numerical work to check mesh accuracy and give confidence for computational results. Then, two turbulence models, Spalart-Allmaras (S-A) and shear stress transport SST (k-ω) were used for the present work. From both parts of study, the flow field development through the cascade have been investigated and compared. Moreover, the received data demonstrated a good agreement between the experimental and computational results. The predicted flow streamlines by numerical calculations showed regions characterized by flow separation and recirculation zones such as corner separation that could be used to enhance the understanding of the loss mechanism in compressor cascades. All measurements taken by the two probes, 5 and 7-hole pressure probes, have been analyzed and compared. The 5-hole pressure probe measurements have showed more agreements with computational results than 7-hole probe. Furthermore S-A turbulence model calculations showed more consistencies with experimental results than SST (k-ω) model.


1996 ◽  
Vol 118 (3) ◽  
pp. 492-502 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

A Navier–Stokes solver is applied to investigate the three-dimensional viscous flow in a low-speed linear compressor cascade with tip clearance at design and off-design conditions with two different meshes. The algebraic turbulence model of Baldwin–Lomax is used for closure. Relative motion between the blades and wall is simulated for one flow coefficient. Comparisons with experimental data, including flow structure, static and total pressures, velocity profiles, secondary flows and vorticity, are presented for the stationary wall case. It is shown that the code predicts well the flow structure observed in experiments and shows the details of the tip leakage flow and the leading edge horseshoe vortex.


Sign in / Sign up

Export Citation Format

Share Document