Experimental Investigation Into the Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.

Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step towards the characterisation of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analysed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. Part I of this two-part paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-PIV measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


Author(s):  
Peter Busse ◽  
Andreas Krug ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step towards the characterisation of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. Part II of this two-part paper focuses on the numerical studies conducted with the scientific flow solver TRACE. Selected measurements, which are discussed in detail in the first part of this paper, are compared with steady state RANS simulation data to determine the validity of the computational model. For this purpose, the flow field obtained in the passage (PIV), at the cascade exit (five-hole probes) and the endwall pressure distributions were used. The presented numerical results show potentials and limitations of the steady state CFD for the prediction of the investigated flow phenomena. The computations provide the initial conditions for future unsteady calculations, and enable a separate depiction of potential effects of steady and unsteady wake-tip clearance vortex interaction.


1993 ◽  
Vol 115 (3) ◽  
pp. 453-467 ◽  
Author(s):  
R. F. Kunz ◽  
B. Lakshminarayana ◽  
A. H. Basson

Three-dimensional Euler and full Navier–Stokes computational procedures have been utilized to simulate the flow field in an axial compressor cascade with tip clearance. An embedded H-grid topology was utilized to resolve the flow physics in the tip gap region. The numerical procedure employed is a finite difference Runge-Kutta scheme. Available measurements of blade static pressure distributions along the blade span, dynamic pressure and flow angle in the cascade outlet region, and spanwise distributions of blade normal force coefficient and circumferentially averaged flow angle are used for comparison. Several parameters that were varied in the experimental investigations were also varied in the computational studies. Specifically, measurements were taken and computations were performed on the configuration with and without: tip clearance, the presence of an endwall, inlet endwall total pressure profiles and simulated relative casing rotation. Additionally, both Euler and Navier–Stokes computations were performed to investigate the relative performance of these approaches in reconciling the physical phenomena considered. Results indicate that the Navier–Stokes procedure, which utilizes a low Reynolds number k–ε model, captures a variety of important physical phenomena associated with tip clearance flows with good accuracy. These include tip vortex strength and trajectory, blade loading near the tip, the interaction of the tip clearance flow with passage secondary flow, and the effects of relative endwall motion. The Euler computation provides good but somewhat diminished accuracy in resolution of some of these clearance phenomena. It is concluded that the level of modeling embodied in the present approach is sufficient to extract much of the tip region flow field information useful to designers of turbomachinery.


Author(s):  
Jinwoo Bae ◽  
Kenneth S. Breuer ◽  
Choon S. Tan

Natural and forced responses of the tip clearance vortex are measured in a linear compressor cascade to characterize periodic unsteadiness of the tip clearance vortex. There exists a natural frequency at which the tip clearance vortex is the most receptive to external forcing, thus resulting in mixing enhancement and flow blockage reduction. A physical explanation of the source of the observed periodic unsteadiness is suggested based on the trailing vortex instability theory. Observations of the time scale for the unsteadiness from different compressor geometries and flow conditions are shown to scale with a reduced frequency based on convective time through the blade passage.


2021 ◽  
pp. 1-20
Author(s):  
Liesbeth Konrath ◽  
Dieter Peitsch ◽  
Alexander Heinrich

Abstract Tandem blades have often been under investigation, experimentally as well as numerically, but most studies have been about tandem blade stators without tip gap. This work analyzes the influence of a tip gap on the flow field of a tandem blade for engine core compressors. Experiments have been conducted in a high-speed linear compressor cascade on a tandem and a reference geometry. The flow is analyzed using five-hole probe measurements in the wake of the blades and oil flow visualization to show the near surface stream lines. First, the results for design conditions (tandem and conventional blade) are compared to measurements on corresponding blades without tip gap. Similarities and differences in the flow topology due to the tip clearance are analyzed, showing that the introduction of the tip clearance has a similar influence on the loss and turning development for the tandem and the conventional blade. The tandem blade features two tip clearance vortices with a complex flow interaction and the possible formation of a third counter-rotating vortex between them. An incidence variation from 0deg to 5deg for both blades indicates at first a similar behavior. After a separation of the flow field into gap and non-gap half it becomes apparent that the tandem blade shows higher losses on the gap side, while featuring a close-to-constant behavior on the non-gap side. Further investigation of the flow on the gap side shows indicators of the front blade exhibiting tip clearance vortex break down.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1445
Author(s):  
Moru Song ◽  
Hong Xie ◽  
Bo Yang ◽  
Shuyi Zhang

This paper studies the influence of tip clearance on the flow characteristics related to the performance. Based on full-passage numerical simulation with experimental validation, several clearance models are established and the performance curves are obtained. It is found that there exists an optimum clearance for the stable working range. By analyzing the flow field in tip region, the role of the tip leakage flow is illustrated. In the zero-clearance model, the separation and blockage along the suction side is the main reason for rotating stall. As the tip clearance is increased to the optimum value, the separation is suppressed by the tip leakage flow. However, with the continuing increasing of the tip clearance, the scale and strength of the tip clearance vortex is increased correspondingly. When the tip clearance is larger than the optimum value, the tip clearance vortex gradually dominates the flow field in the tip region, which can increase the unsteadiness in the tip region and trigger forward spillage in stall onset.


2019 ◽  
Author(s):  
Saeed A. El-Shahat ◽  
Hesham M. El-Batsh ◽  
Ali M. A. Attia ◽  
Guojun Li ◽  
Lei Fu

Abstract Flow separation is a major parameter affecting the compressor performance. It reduces the compressor efficiency, limits static pressure rise capability and contributes to instability in compressors. In applied research, there is a lack of understanding of the nature and mechanism of the three-dimensional (3-D) flow separation in the axial compressor especially on the juncture of the endwall and blade corner region. In the present study, the 3-D flow field in an axial compressor cascade has been studied experimentally as well as numerically. For the experimental study part, a linear compressor cascade has been installed in an open loop wind tunnel. The experimental data was acquired for a Reynolds number Rec = 2.98 × 105 based on the blade chord and the inlet flow conditions. The total pressure loss progress through the blade passage has been measured by using calibrated five and seven-hole pressure probes connected to ATX sensor module data acquisition system. The static pressure distribution on the endwall has been measured employing static pressure taps connected to digital micromanometers. To investigate the loss mechanism through the cascade, the total pressure loss coefficient has been calculated from the measured data. The computational fluid dynamics (CFD) study of the flow field was performed to gain a better understanding of the flow features. Two turbulence models, Spalart-Allmaras (S-A) and shear stress transport SST (k-ω) were used. From both parts of study, the flow field development and total pressure loss progress through the cascade have been investigated and compared. Moreover, the received data demonstrated a good agreement between the experimental and computational results. The predicted flow streamlines by numerical calculations showed regions characterized by flow separation and recirculation zones that could be used to enhance the understanding of the loss mechanism in compressor cascades. All measurements taken by 5-hole and 7-hole pressure probes have been analyzed and compared. It was found that their readings were almost the same and there are no excellences for using 7-hole probe. Furthermore S-A turbulence model calculations showed more consistencies with experimental results than SST (k-ω) model.


Author(s):  
Liesbeth Konrath ◽  
Dieter Peitsch ◽  
Alexander Heinrich

Abstract Tandem blades have often been under investigation, experimentally as well as numerically, but most studies have been about tandem blade stators without tip gap. This work analyzes the influence of a tip gap on the flow field of a tandem blade for engine core compressors. Experiments have been conducted in a high-speed linear compressor cascade on a tandem and a reference geometry. The flow is analyzed using five-hole probe measurements in the wake of the blades and oil flow visualization to show the near surface stream lines. First, the results for design conditions (tandem and conventional blade) are compared to measurements on corresponding blades without tip gap. Similarities and differences in the flow topology due to the tip clearance are analyzed, showing that the introduction of the tip clearance has a similar influence on the loss and turning development for the tandem and the conventional blade. The tandem blade features two tip clearance vortices with a complex flow interaction and the possible formation of a third counter-rotating vortex between them. An incidence variation from 0° to 5° for both blades indicate at first a similar behavior. After a separation of the flow field into gap and non-gap half it becomes apparent that the tandem blade shows higher losses on the gap side, while featuring a close-to-constant behavior on the non-gap side. Further investigation of the flow on the gap side shows indicators of the front blade exhibiting tip clearance vortex break down, while the rear blade seems unaffected.


Author(s):  
Henner Schrapp ◽  
Udo Stark ◽  
Horst Saathoff

The paper describes experimental investigations of the tip clearance vortex in a linear compressor cascade with a tip clearance to one side and a compressor with a rotor tip section represented by the cascade. The aim is to show experimentally that breakdown of the tip clearance vortex can take place in subsonic compressors. As a first step, the flow in the linear compressor cascade has been investigated at different flow angles from the design point up to the stability limit of the cascade. In a second step the flow in the tip region of the rotor in a low-speed single-stage compressor has been investigated from the design point up to the stall limit of the compressor. The analysis of PIV measurements reveal a low momentum fluid area in the passage both in the cascade and the compressor when approaching the stall limit. This area is separated from the main flow by an interface that is characterized by high standard deviations of the velocities. The location of this interface correlates well with the positions at which the analysis of the unsteady pressure signals obtained with several flush mounted high-response pressure transducers reveals a bump of increased amplitude at a certain nondimensional frequency. The results in the compressor are for the most part identical to those obtained in the cascade. When approaching stall a distinct bump shows up in the casing wall pressure spectra at a nondimensional frequency comparable to the nondimensional frequency found in the cascade. At the same time an area of very low momentum fluid accumulates in the vicinity of the original vortex axis, as can be shown by PIV measurements in the rotor of the compressor. Additionally it can be shown, that the blockage that is due to the broken down tip clearance vortex leads to a rotating phenomenon, comparable to the phenomenon of ‘rotating instabilities’.


1992 ◽  
Author(s):  
R. F. Kunz ◽  
B. Lakshminarayana ◽  
A. H. Basson

Three-dimensional Euler and Full Navier-Stokes computational procedures have been utilized to simulate the flow field in an axial compressor cascade with tip clearance. An embedded H-grid topology was utilized to resolve the flow physics in the tip gap region. The numerical procedure employed is a finite difference Runge-Kutta scheme. Available measurements of blade static pressure distributions along the blade span, dynamic pressure and flow angle in the cascade outlet region, and spanwise distributions of blade normal force coefficient and circumferentially averaged flow angle are used for comparison. Several parameters which were varied in the experimental investigations were also varied in the computational studies. Specifically, measurements were taken and computations were performed on the configuration with and without: tip clearance, the presence of an endwall, inlet endwall total pressure profiles and simulated relative casing rotation. Additionally, both Euler and Navier-Stokes computations were performed to investigate the relative performance of these approaches in reconciling the physical phenomena considered. Results indicate that the Navier-Stokes procedure, which utilizes a low Reynolds number k-ε model, captures a variety of important physical phenomena associated with tip clearance flows with good accuracy. These include tip vortex strength and trajectory, blade loading near the tip, the interaction of the tip clearance flow with passage secondary flow and the effects of relative endwall motion. The Euler computation provides good but somewhat diminished accuracy in resolution of some of these clearance phenomena. It is concluded that the level of modelling embodied in the present approach is sufficient to extract much of the tip region flow field information useful to designers of turbomachinery.


Sign in / Sign up

Export Citation Format

Share Document