Topology Optimization of High Aspect Ratio Internal Cooling Channels As a Design for Additive Manufacturing

Author(s):  
Shinjan Ghosh ◽  
Jayanta S. Kapat

Abstract High aspect ratio channels are a common internal cooling feature in Gas Turbine blades, mostly suitable for the trailing edge region or mid-chord regions. Traditionally such channels are fitted with rib-turbulators and/or pin-fin turbulators to augment heat transfer and prevent material failure. Highly efficient internal cooling of blades can improve the efficiency of a real Gas Turbine power cycle by tolerating higher Turbine Inlet Temperatures (TIT). Multi-physics Topology optimization (TO) has been employed in the current study to find optimized shape of these ducts, with an aim to increase heat transfer, while constraining the pressure drop across the channel. This method, commonly used in structural problems, is a novel topic of research when applied to fluid-thermal studies. Material distribution in the computational domain is varied by changing porosity value in each cell and thereby altering the fluid path and creating a conjugate heat transfer problem. Each cell has a value of Brinkmann porosity factor which either simulates a blockage, or a fluid region depending on a low or high value of this design variable. Hence the degree of freedom is high in this method, and there is no manual bias introduced, unlike in parametric shape optimization which is limited to a few design parameters. The unconventional geometries obtained as an end product of this optimization process can thus be an alternative to existing rib/pin-fin type of cooling geometries. The recent progress in additive manufacturing can now facilitate the manufacturing of complicated shapes. An in-house Open-FOAM solver has been used to carry out the process in only twice the amount of time compared to a regular RANS-CFD. 3-Dimensional rectangular channels with inlet aspect ratios of 4:1 and 8:1 have been considered as baselines with a constant inlet velocity. Resulting optimum geometries were found to have organic tree like branching arrangements of rib-like wall roughness and v-shaped structures.

Author(s):  
Shinjan Ghosh ◽  
Jayanta S. Kapat

Abstract Gas Turbine blade cooling is an important topic of research, as a high turbine inlet temperature (TIT) essentially means an increase in efficiency of gas turbine cycles. Internal cooling channels in gas turbine blades are key to the cooling and prevention of thermal failure of the material. Serpentine channels are a common feature in internal blade cooling. Optimization methods are often employed in the design of blade internal cooling channels to improve heat-transfer and reduce pressure drop. Topology optimization uses a variable porosity approach to manipulate flow geometries by adding or removing material. Such a method has been employed in the current work to modify the geometric configuration of a serpentine channel to improve total heat transferred and reduce the pressure drop. An in-house OpenFOAM solver has been used to create non-traditional geometries from two generic designs. Geometry-1 is a 2-D serpentine passage with an inlet and 4 bleeding holes as outlets for ejection into the trailing edge. Geometry-2 is a 3-D serpentine passage with an aspect ratio of 3:1 and consists of two 180-degree bends. The inlet velocity for both the geometries was used as 20 m/s. The governing equations employ a “Brinkman porosity parameter” to account for the porous cells in the flow domain. Results have shown a change in shape of the channel walls to enhance heat-transfer in the passage. Additive manufacturing can be employed to make such unconventional shapes.


Author(s):  
Metapun Nuntakulamarat ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This paper focuses on the measurements of heat transfer enhancement and pressure drop of different pin or fin configurations in a high aspect ratio (AR = 9.57/1.2) channel. Two different pin-fin shapes including circular pins and strip fins were studied. Different pin-fin spacings for circular pins (S/D = 2, 4) and strip fins (S/W = 8, 16) were investigated, respectively. In addition, the thickness effect of the strip fin was included in this study. The regionally averaged heat transfer measurement method was used to acquire the heat transfer coefficients on two opposite featured surfaces within the test channel. For each configuration, the tested Reynolds number was ranging from 20,000 to 80,000. The results indicate that the channel with circular pins has better heat transfer enhancement and higher pressure loss than their strip fins counterparts. However, the strip fins are considered better designs in terms of thermal performance. For the gas turbine designers aim at developing an improved internal cooling feature, this work demonstrates the great potential of the strip fins as a novel and effective cooling design compared with the conventional circular pins.


2021 ◽  
pp. 1-85
Author(s):  
Shinjan Ghosh ◽  
Erik Fernandez ◽  
Jayanta Kapat

Abstract Topology optimization uses a variable permeability approach to manipulate flow geometries. Such a method has been employed in the current work to modify the geometric configuration of internal cooling ducts by manipulating the distribution of material blockage. A modified version of the OpenFOAM solver AdjointshapeoptimizationFOAM has been used to optimize the flow path of a serpentine channel and high aspect ratio rectangular ducts, with increase in heat transfer and reduction in pressure drop as the objective functions. These duct shapes are typically used as internal cooling channels in gas turbine blades for sustaining the blade material at high inlet temperatures. The serpentine channel shape was initially topologically optimized, the fluid path from which was post-processed and re-simulated in STAR-CCM+. The end result had an improvement in thermal performance efficiency by 24%. Separation regions were found to be reduced when compared to the original baseline. The second test geometry was a high aspect ratio rectangular duct. Weight factors were assigned to the objective functions in this multi-objective approach, which were varied to obtain a unique shape for each such combination. The addition of mass penalization to the existing objective function resulted in a complex lattice like structure, which was a different outcome in geometry and shape when compared to the case without any additional penalization. The thermal performance efficiency of this shape was found to be higher by at-least 18% when compared to the CFD results of a few other turbulator shapes from literature.


Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Author(s):  
Oguz Uzol ◽  
Cengiz Camci

A new concept for enhanced turbulent transport of heat in internal coolant passages of gas turbine blades is introduced. The new heat transfer augmentation component called “oscillator fin” is based on an unsteady flow system using the interaction of multiple unsteady jets and wakes generated downstream of a fluidic oscillator. Incompressible, unsteady and two dimensional solutions of Reynolds Averaged Navier-Stokes equations are obtained both for an oscillator fin and for an equivalent cylindrical pin fin and the results are compared. Preliminary results show that a significant increase in the turbulent kinetic energy level occur in the wake region of the oscillator fin with respect to the cylinder with similar level of aerodynamic penalty. The new concept does not require additional components or power to sustain its oscillations and its manufacturing is as easy as a conventional pin fin. The present study makes use of an unsteady numerical simulation of mass, momentum, turbulent kinetic energy and dissipation rate conservation equations for flow visualization downstream of the new oscillator fin and an equivalent cylinder. Relative enhancements of turbulent kinetic energy and comparisons of the total pressure field from transient simulations qualitatively suggest that the oscillator fin has excellent potential in enhancing local heat transfer in internal cooling passages without significant aerodynamic penalty.


Author(s):  
Christophe Diette ◽  
Tony Arts ◽  
Olivier Sgarzi ◽  
Emmanuel Laroche

The flow behavior and heat transfer were measured in a large scale, high aspect ratio, turbine blade rib-roughened internal cooling channel. The ribs, installed on one wall, were inclined at 90 deg with respect to the main flow direction and generated a blockage of 20%. The rib corners were rounded to take into account manufacturing aspects. The bulk flow Reynolds number was 20,000. Pressure drop and velocity measurements were first conducted. Liquid crystal thermography was applied to quantify the heat transfer, not only along the ribbed and the smooth opposite walls but also on the rib itself. Numerical simulations were conducted with two flow solvers, IGG/FINE (Numeca) and MSD (ONERA) and compared with measurements. They also supported the analysis of the flow behavior. The influence of round-corner versus sharp edge ribs was numerically evaluated with IGG/FINE.


Author(s):  
Rui Kan ◽  
Shuqing Tian

A combined impingement-pedestal geometry for turbomachinery double wall cooling application is studied numerically with the shear stress transport turbulence model. Conjugated CFD simulation is performed to investigate the cooling effectiveness distribution. The configuration consists of a high aspect ratio cooling duct, with jet array impinging onto the pin fin-roughed wall. The jet Reynolds number varies from 8,000 to 80,000, jet-to-target wall spacing is kept constant at Z/Dj=0.8. Three main parameters are investigated, including the jet Reynolds number, pin fin shapes (circular and elongated) and the relative location between jets and pin fins (the jet placed uniformly inside the duct or more densely at the front of the duct). For more detailed investigations, the pin fin diameter and impingement hole diameter are varied independently, and a total of 26 configurations are studied. The results show that the double wall configuration with pin fins significantly increases the heat transfer coefficients, compared to that with only impingement. Non-uniform jet arrangement results in a stronger crossflow and enhances heat transfer on the pins, which brings an increase of cooling effectiveness and more uniform temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document