Topology Optimization of Serpentine Channels for Minimization of Pressure Loss and Maximization of Heat Transfer Performance As Applied for Additive Manufacturing

Author(s):  
Shinjan Ghosh ◽  
Jayanta S. Kapat

Abstract Gas Turbine blade cooling is an important topic of research, as a high turbine inlet temperature (TIT) essentially means an increase in efficiency of gas turbine cycles. Internal cooling channels in gas turbine blades are key to the cooling and prevention of thermal failure of the material. Serpentine channels are a common feature in internal blade cooling. Optimization methods are often employed in the design of blade internal cooling channels to improve heat-transfer and reduce pressure drop. Topology optimization uses a variable porosity approach to manipulate flow geometries by adding or removing material. Such a method has been employed in the current work to modify the geometric configuration of a serpentine channel to improve total heat transferred and reduce the pressure drop. An in-house OpenFOAM solver has been used to create non-traditional geometries from two generic designs. Geometry-1 is a 2-D serpentine passage with an inlet and 4 bleeding holes as outlets for ejection into the trailing edge. Geometry-2 is a 3-D serpentine passage with an aspect ratio of 3:1 and consists of two 180-degree bends. The inlet velocity for both the geometries was used as 20 m/s. The governing equations employ a “Brinkman porosity parameter” to account for the porous cells in the flow domain. Results have shown a change in shape of the channel walls to enhance heat-transfer in the passage. Additive manufacturing can be employed to make such unconventional shapes.

Author(s):  
Arash Saidi ◽  
Bengt Sundén

Internal cooling channels are commonly used to reduce the thermal loads on the gas turbine blades to improve overall efficiency. In this study a numerical investigation has been carried out to provide a validated and consistent method to deal with the prediction of the fluid flow and the heat transfer of such channels with square cross sections. The rotation modified Navier-Stokes and energy equations together with a low-Re number version of the k-ε turbulence model are solved with appropriate boundary conditions. The solution procedure is based on a numerical method using a collocated grid, and the pressure-velocity coupling is handled by the SIMPLEC algorithm. The computations are performed with the assumption of fully developed periodic conditions. The calculations are carried out for smooth ducts with and without rotation and effects of rotation on the heat transfer are described. Similar numerical calculations have carried out for channels with rib-roughened walls. The obtained results are compared with available experimental data and empirical correlations for the heat transfer rate and the friction factor. Some details of the flow and heat transfer fields are also presented.


Author(s):  
Sourabh Kumar ◽  
R. S. Amano

Improvement in thermal efficiency of gas turbine can be obtained by operating it at high inlet temperatures. In addition to improving the performance, the cons of high inlet temperature is high thermal stresses on the turbine blades. To improve life and performance of the blade, improved cooling technologies are desired. The main objective of this paper is to perform computational analysis of the ribs with varying height and compare this with 90 degree ribbed channel and smooth channels. The numerical analysis is carried out using ANSYS-Fluent, a flow modeling simulation software. The flow is assumed to be steady state and flow turbulence is modeled using the k-ε with Standard Wall Functions. Local heat transfer and friction loss in a square duct roughened with 90 degree ribs with varying height is investigated for different Reynolds number. The pitch of the rib is considered to be 10 times the height of rib which is 0.0635 m. The square cross section of the channel is .0508x .0508 m2. The pitch of rib to rib height ratio varies from 10 to 20 at the center of the channel. There is a rib considered at the turn section as well. The numerical simulation produced higher heat transfer for the varying height ribs as compared to 90 degree ribbed channel and smooth channel.


Author(s):  
Shinjan Ghosh ◽  
Jayanta S. Kapat

Abstract High aspect ratio channels are a common internal cooling feature in Gas Turbine blades, mostly suitable for the trailing edge region or mid-chord regions. Traditionally such channels are fitted with rib-turbulators and/or pin-fin turbulators to augment heat transfer and prevent material failure. Highly efficient internal cooling of blades can improve the efficiency of a real Gas Turbine power cycle by tolerating higher Turbine Inlet Temperatures (TIT). Multi-physics Topology optimization (TO) has been employed in the current study to find optimized shape of these ducts, with an aim to increase heat transfer, while constraining the pressure drop across the channel. This method, commonly used in structural problems, is a novel topic of research when applied to fluid-thermal studies. Material distribution in the computational domain is varied by changing porosity value in each cell and thereby altering the fluid path and creating a conjugate heat transfer problem. Each cell has a value of Brinkmann porosity factor which either simulates a blockage, or a fluid region depending on a low or high value of this design variable. Hence the degree of freedom is high in this method, and there is no manual bias introduced, unlike in parametric shape optimization which is limited to a few design parameters. The unconventional geometries obtained as an end product of this optimization process can thus be an alternative to existing rib/pin-fin type of cooling geometries. The recent progress in additive manufacturing can now facilitate the manufacturing of complicated shapes. An in-house Open-FOAM solver has been used to carry out the process in only twice the amount of time compared to a regular RANS-CFD. 3-Dimensional rectangular channels with inlet aspect ratios of 4:1 and 8:1 have been considered as baselines with a constant inlet velocity. Resulting optimum geometries were found to have organic tree like branching arrangements of rib-like wall roughness and v-shaped structures.


Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Yue Yin ◽  
Pietro Zunino

Abstract Nowadays, gas turbine engines play an indispensable role in modern industry, which have been widely used especially in the aviation, marine and energy fields. The turbine inlet temperature is one of the most important factors that influences the performance of the turbine engine. It’s acknowledged that the higher turbine inlet temperature contributes to the overall gas turbine engine efficiency. Therefore, the internal cooling technology of turbine blades is of vital importance. This paper mainly studies the effects of dimples and protrusions on flow and heat transfer in matrix cooling channels and optimize the performance of the matrix cooling structure by numerical simulation and experiment methods. Thirteen cases have been calculated under Re = 10,000∼80,000 by the commercial code ANSYS Fluent. Structures with different layouts of dimples and protrusions were considered, such as the number, distance and the depth ratio. The original model has been strengthened due to the dimple and protrusion structure, which improves heat transfer performance as well as the thermal performance factor (TPF) on condition that the pressure loss increases slightly. Meanwhile, the optimized structures have been made and tested by the transient liquid crystal technique (TLC). A comparison between the CFD results and the experimental data is made. Note that the heat transfer performance is much better when the ratio of the dimple depth and the dimple diameter is equal to 0.3, compared with the ratio of 0.1 and 0.2. In terms of the cases with two sides dimples, the heat transfer can be enhanced by increasing the number of the dimples. In addition, the heat transfer performance is the best when both of dimples and protrusions are applied. Nu/Nu0 and TPF increase by up to approximately 7% and 5% respectively.


2020 ◽  
Author(s):  
Ky-Quang Pham ◽  
Quang-Hai Nguyen ◽  
Tai-Duy Vu ◽  
Cong-Truong Dinh

Abstract Gas turbine engine has been widely applied to many heavy industries, such as marine propulsion and aerospace fields. Increasing turbine inlet temperature is one of the major ways to improve the thermal efficiency of gas turbines. Internal cooling for gas turbine cooling system is one of the most commonly used approaches to reduce the temperature of blades by casting various kinds of ribs in serpentine passages to enhance the heat transfer between the coolant and hot surface of gas turbine blades. This paper presents an investigation of boot-shaped rib design to increase the heat transfer performances in the internal cooling turbine blades for gas turbine engines. By varying the design parameter configuration, the airflow is taken with higher momentum, and the minor vortex being at the front rib is relatively removed. The object of this investigation is increasing the reattachment airflow to wall and reducing the vortex occurring near the rib for improving the performances of heat transfer using three-dimensional Reynolds-averaged Navier-Stokes with the SST model. A parametric study of the boot-shaped rib design was performed using various geometric parameters related to the heel-angle, toe-angle, slope-height and rib-width to find their effect on the Nusselt number, temperature on the ribbed wall, friction factor ratio of the channel and thermal performance factor. The numerical results showed that the heat transfer performances are significantly increased with the heel-angle, toe-angle, slope-height, while that remained relatively constant with the rib-width.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3954
Author(s):  
Liang Xu ◽  
Qicheng Ruan ◽  
Qingyun Shen ◽  
Lei Xi ◽  
Jianmin Gao ◽  
...  

Traditional cooling structures in gas turbines greatly improve the high temperature resistance of turbine blades; however, few cooling structures concern both heat transfer and mechanical performances. A lattice structure (LS) can solve this issue because of its advantages of being lightweight and having high porosity and strength. Although the topology of LS is complex, it can be manufactured with metal 3D printing technology in the future. In this study, an integral optimization model concerning both heat transfer and mechanical performances was presented to design the LS cooling channel with a variable aspect ratio in gas turbine blades. Firstly, some internal cooling channels with the thin walls were built up and a simple raw of five LS cores was taken as an insert or a turbulator in these cooling channels. Secondly, relations between geometric variables (height (H), diameter (D) and inclination angle(ω)) and objectives/functions of this research, including the first-order natural frequency (freq1), equivalent elastic modulus (E), relative density (ρ¯) and Nusselt number (Nu), were established for a pyramid-type lattice structure (PLS) and Kagome-type lattice structure (KLS). Finally, the ISIGHT platform was introduced to construct the frame of the integral optimization model. Two selected optimization problems (Op-I and Op-II) were solved based on the third-order response model with an accuracy of more than 0.97, and optimization results were analyzed. The results showed that the change of Nu and freq1 had the highest overall sensitivity Op-I and Op-II, respectively, and the change of D and H had the highest single sensitivity for Nu and freq1, respectively. Compared to the initial LS, the LS of Op-I increased Nu and E by 24.1% and 29.8%, respectively, and decreased ρ¯ by 71%; the LS of Op-II increased Nu and E by 30.8% and 45.2%, respectively, and slightly increased ρ¯; the LS of both Op-I and Op-II decreased freq1 by 27.9% and 19.3%, respectively. These results suggested that the heat transfer, load bearing and lightweight performances of the LS were greatly improved by the optimization model (except for the lightweight performance for the optimal LS of Op-II, which became slightly worse), while it failed to improve vibration performance of the optimal LS.


2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


Author(s):  
Oguz Uzol ◽  
Cengiz Camci

A new concept for enhanced turbulent transport of heat in internal coolant passages of gas turbine blades is introduced. The new heat transfer augmentation component called “oscillator fin” is based on an unsteady flow system using the interaction of multiple unsteady jets and wakes generated downstream of a fluidic oscillator. Incompressible, unsteady and two dimensional solutions of Reynolds Averaged Navier-Stokes equations are obtained both for an oscillator fin and for an equivalent cylindrical pin fin and the results are compared. Preliminary results show that a significant increase in the turbulent kinetic energy level occur in the wake region of the oscillator fin with respect to the cylinder with similar level of aerodynamic penalty. The new concept does not require additional components or power to sustain its oscillations and its manufacturing is as easy as a conventional pin fin. The present study makes use of an unsteady numerical simulation of mass, momentum, turbulent kinetic energy and dissipation rate conservation equations for flow visualization downstream of the new oscillator fin and an equivalent cylinder. Relative enhancements of turbulent kinetic energy and comparisons of the total pressure field from transient simulations qualitatively suggest that the oscillator fin has excellent potential in enhancing local heat transfer in internal cooling passages without significant aerodynamic penalty.


Author(s):  
Sourabh Kumar ◽  
R. S. Amano

Improvements in the thermal efficiency of a gas turbine can be obtained by operating it at high inlet temperatures. This high inlet temperature develops high thermal stresses on the turbine blades in addition to improving the performance. Cooling methodologies are implemented inside the blades to withstand those high temperatures. Four different combinations of broken 60° V ribs in cooling channel are considered. The research work investigates and compares numerically and experimentally, internal cooling of channels with broken V ribs. Local heat transfer in a square duct roughened with 60° V broken ribs is investigated for three different Reynolds numbers. Aspect ratio of the channel is taken to be 1:1. The pitch of the rib is considered to be 10 times the width of the rib, which is 0.0635 m. The square cross section of the channel is 0.508 × 0.508 m2 with 0.6096 m length. This study provides information about the best configuration of a broken V rib in a cooling channel.


Author(s):  
James Hammond ◽  
Francesco Montomoli ◽  
Marco Pietropaoli ◽  
Richard D. Sandberg ◽  
Vittorio Michelassi

Abstract This work shows the application of Gene Expression Programming to augment RANS turbulence closure modelling for flows through complex geometry, designed for additive manufacturing. Specifically, for the design of optimised internal cooling channels in turbine blades. One of the challenges in internal cooling design is the heat transfer accuracy of the RANS formulation in comparison to higher fidelity methods, which are still not used in design on account of their computational cost. However, high fidelity data can be extremely valuable for improving current lower fidelity models and this work shows the application of data driven approaches to develop turbulence closures for an internally ribbed duct. Different approaches are compared and the results of the improved model are illustrated; first on the same geometry, and then for an unseen predictive case. The work shows the potential of using data driven models for accurate heat transfer predictions even in non-conventional configurations.


Sign in / Sign up

Export Citation Format

Share Document