Study of Using Exhaust Gas Recirculation on a Gas Turbine for Carbon Capture

Author(s):  
Dan Burnes ◽  
Priyank Saxena ◽  
Paul Dunn

Abstract The growing call of minimizing carbon dioxide and other greenhouse gases emitting from energy and transportation products will spur innovation to meet new stringent requirements while striving to preserve significant investments in the current infrastructure. This paper presents quantitative analysis of exhaust gas recirculation (EGR) on industrial gas turbines to enable carbon sequestration venturing towards emission free operation. This study will show the effect of using EGR on gas turbine performance and operation, combustion characteristics, and demonstrate potential hybrid solutions with detailed constituent accounting. Both single shaft and two shaft gas turbines for power generation and mechanically driven equipment are considered for application of this technology. One key element is assessing the combustion system operating at reduced O2 levels within the industrial gas turbine. With the gas turbine behavior operating with EGR defined at a reasonable operating state, a parametric study shows rates of CO2 sequestration along with quantifying supplemental O2 required at the inlet, if needed, to sustain combustion. With rates of capture known, a further exploration is examined reviewing potential utilities, monetizing these sequestered constituents. Ultimately, the objective is to preview a potential future of operating industrial gas turbines in a non-emissive and in some cases carbon negative manner while still using hydrocarbon fuel.

Author(s):  
Daniel Burnes ◽  
Priyank Saxena

Abstract Finding viable economic solutions to significantly reduce or eliminate greenhouse gas emissions from energy and transportation products in the near future is paramount for the long-term survival of fossil fuel burning systems. One of which, the industrial gas turbine, has proven for decades to be a versatile energy system providing high efficiencies in combined heat and power applications melding well within existing infrastructure. Applying appropriate technology, the industrial gas turbine could be augmented to both sequester carbon and improve efficiency leveraging the full heating value of the fuel. The paper considers a more detailed operational assessment of a gas turbine using exhaust gas recirculation (EGR) to enable cost effective post combustion carbon sequestration and utilization. In this study, the effect of using EGR will be assessed at part load and throughout the operational envelope quantifying component and overall performance, detailed combustion characteristics, and maximizing the utilization of exhaust heat and sequestered carbon in various applications. This study will also attempt to quantify true carbon footprint of gas turbine installations and endeavor to understand the relative change of replacing the gas turbine with an all-electric alternative. Fundamentally, we are looking to see if there is a future to sustain and adapt this significant natural gas (NG) energy infrastructure to a net-zero carbon emissive future by 2050.


Author(s):  
Homam Nikpey Somehsaraei ◽  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi

As a renewable energy source, biogas produced from anaerobic digestion seems to play an important role in the energy market. Unlike wind and solar, which are intermittent, gas turbines fueled by biogas provide dispatchable renewable energy that can be ramped up and down to match the demand. If post-combustion carbon capture systems are implemented, they can also result in negative CO2 emissions. However, one of the major challenges here is the energy needed for CO2 chemical absorption in post-combustion capture, which is closely related to the concentration of CO2 in the exhaust gas upstream of the capture unit. This paper presents an evaluation of the effects of biogas and exhaust gas recirculation use on the performance of the gas turbine cycle for post-combustion CO2 capture application. The study is based on a combined heat and power micro gas turbine, Turbec T100, delivering 100kWe. The thermodynamic model of the gas turbine has been validated against experimental data obtained from test facilities in Norway and the United Kingdom. Based on the validated model, performance calculations for the baseline micro gas turbine (fueled by natural gas), biogas-fired cases and the cycle with exhaust gas recirculation have been carried out at various operational conditions and compared together. A wide range of biogas composition with varying methane content was assumed for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow the engine operation with different biogas composition. The methodology and results are fully discussed in this paper.


2021 ◽  
Author(s):  
Dan Burnes ◽  
Priyank Saxena

Abstract Finding viable economic solutions to significantly reduce or eliminate greenhouse gas emissions from energy and transportation products in the near future is paramount for the long-term survival of fossil fuel burning systems. One of which, the industrial gas turbine, has proven for decades to be a versatile energy system providing high efficiencies in combined heat and power applications melding well within existing infrastructure. Applying appropriate technology, the industrial gas turbine could be augmented to both sequester carbon and improve efficiency leveraging the full heating value of the fuel. The paper considers a more detailed operational assessment of a gas turbine using exhaust gas recirculation (EGR) to enable cost effective post combustion carbon sequestration and utilization. In this study, the effect of using EGR will be assessed at part load and throughout the operational envelope quantifying component and overall performance, detailed combustion characteristics, and maximizing the utilization of exhaust heat and sequestered carbon in various applications. This study will also attempt to quantify true carbon footprint of gas turbine installations and endeavor to understand the relative change of replacing the gas turbine with an all-electric alternative. Fundamentally, we are looking to see if there is a future to sustain and adapt this significant natural gas (NG) energy infrastructure to a net-zero carbon emissive future by 2050.


Author(s):  
A. M. Elkady ◽  
A. R. Brand ◽  
C. L. Vandervort ◽  
A. T. Evulet

In a carbon constrained world there is a need for capturing and sequestering CO2. Post-combustion carbon capture via Exhaust Gas Recirculation (EGR) is considered a feasible means of reducing emission of CO2 from power plants. Exhaust Gas Recirculation is an enabling technology for increasing the CO2 concentration within the gas turbine cycle and allow the decrease of the size of the separation plant, which in turn will enable a significant reduction in CO2 capture cost. This paper describes the experimental work performed to better understand the risks of utilizing EGR in combustors employing dry low emissions (DLE) technologies. A rig was built for exploring the capability of premixers to operate in low O2 environment, and a series of experiments in a visually accessible test rig was performed at representative aeroderivative gas turbine pressures and temperatures. Experimental results include the effect of applying EGR on operability, efficiency and emissions performance under conditions of up to 40% EGR. Findings confirm the viability of EGR for enhanced CO2 capture; In addition, we confirm benefits of NOx reduction while complying with CO emissions in DLE combustors under low oxygen content oxidizer.


Author(s):  
Ahmed M. ElKady ◽  
Andrei Evulet ◽  
Anthony Brand ◽  
Tord Peter Ursin ◽  
Arne Lynghjem

This paper describes experimental work performed at General Electric, Global Research Center to evaluate the performance and understand the risks of using dry low NOx (DLN) technologies in exhaust gas recirculation (EGR) conditions. Exhaust gas recirculation is viewed as an enabling technology for increasing the CO2 concentration of the flue gas while decreasing the volume of the postcombustion separation plant and therefore allowing a significant reduction in CO2 capture cost. A research combustor was developed for exploring the performance of nozzles operating in low O2 environment at representative pressures and temperatures. A series of experiments in a visually accessible test rig have been performed at gas turbine pressures and temperatures, in which inert gases such as N2/CO2 were used to vitiate the fresh air to the levels determined by cycle models. Moreover, the paper discusses experimental work performed using a DLN nozzle used in GE’s F-class heavy-duty gas turbines. Experimental results using a research combustor operating in a partially premixed mode include the effect of EGR on operability, efficiency, and emission performance under conditions of up to 40% EGR. Experiments performed in a fully premixed mode using a DLN single nozzle combustor revealed that further reductions in NOx could be achieved while at the same time still complying with CO emissions. While most existing studies concentrate on limitations related to the minimum oxygen concentration (MOC) at the combustor exit, we report the importance of CO2 levels in the oxidizer. This limitation is as important as the MOC, and it varies with the pressure and firing temperatures.


Author(s):  
Ward De Paepe ◽  
Marina Montero Carrero ◽  
Simone Giorgetti ◽  
Alessandro Parente ◽  
Svend Bram ◽  
...  

From all fossil fuels, natural gas has the lowest carbon to hydrogen ratio, which enables Gas Turbines (GTs) running on natural gas to produce electricity with the lowest CO2 emissions per produced kWh. These lower emissions have pushed power production towards natural gas. However, if we want to move towards a carbon clean power production, the carbon in the exhaust must be captured. This leads to a major challenge since the low CO2 concentration in the exhaust of a GT makes carbon capture much more expensive compared to coal fired power production. The CO2 concentration can be increased by performing Exhaust Gas Recirculation (EGR). However, EGR on GT cycles negatively affects the efficiency. Using the concept of Humid Air Turbine (HAT), we investigate whether the efficiency losses can be compensated by introducing water in the cycle. This paper presents this novel approach by showing the impact of EGR on a flexible humidified micro Gas Turbine (mGT). It is based on results of simulations performed in Aspen® using the Turbec T100 mGT as reference case. Both the dry and wet operation of the Turbec T100 were simulated and validated with experimental results. For improved carbon capture, EGR was simulated in both the dry and the humidified mGT cycle. Simulation results indicate that EGR has no effect on the thermodynamic performance of the mGT and its components (compressor, turbine and recuperator), however efficiency is reduced significantly (up to 3.8% relative at nominal power output) because of additional losses to the fan blower installed to ensure the EGR. Additionally, the cycle performance strongly depends on the degree of cooling of the EGR stream before injection in the compressor inlet. Nevertheless, the simulation results also reveal that mGT humidification increases the total cycle efficiency, entirely compensating the EGR induced losses. Humidifying the mGT with EGR even leads to a higher electric efficiency than the standard mGT cycle, unlocking the idea of carbon capture in mGTs.


Author(s):  
Joseph Ranalli ◽  
Don Ferguson

Exhaust gas recirculation has been proposed as a potential strategy for reducing the cost and efficiency penalty associated with postcombustion carbon capture. However, this approach may cause as-yet unresolved effects on the combustion process, including additional potential for the occurrence of thermoacoustic instabilities. Flame dynamics, characterized by the flame transfer function, were measured in traditional swirl stabilized and low-swirl injector combustor configurations, subject to exhaust gas circulation simulated by N2 and CO2 dilution. The flame transfer functions exhibited behavior consistent with a low-pass filter and showed phase dominated by delay. Flame transfer function frequencies were nondimensionalized using Strouhal number to highlight the convective nature of this delay. Dilution was observed to influence the dynamics primarily through its role in changing the size of the flame, indicating that it plays a similar role in determining the dynamics as changes in the equivalence ratio. Notchlike features in the flame transfer function were shown to be related to interference behaviors associated with the convective nature of the flame response. Some similarities between the two stabilization configurations proved limiting and generalization of the physical behaviors will require additional investigation.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


Sign in / Sign up

Export Citation Format

Share Document