Analysis of the Emission Reduction Potential and Combustion Stability Limits of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation

2021 ◽  
Author(s):  
Nils Hendrik Petersen ◽  
Thomas Bexten ◽  
Christian Goßrau ◽  
Manfred Wirsum

Abstract To mitigate its impact on global climate, the power generation sector must strive towards a transition to net-zero emissions of greenhouse gases. This can be achieved by a massive penetration of renewable power generation. However, a high share of renewable power generation requires dispatchable and flexible power generation technologies such as gas turbines to maintain the stability of power grids. To achieve net-zero green house gas emissions, gas turbines have to be operated exclusively with carbon-neutral fuels. Hydrogen is a promising carbon-neutral fuel, although it comes along with several challenges regarding stable combustion. A possible measure to stabilize hydrogen combustion is the partial external recirculation of exhaust gases (EGR). In a previous study, the authors presented a model-based thermodynamic analysis of an industrial gas turbine featuring EGR. The next step was to answer the question of whether the thermodynamically negative impact of EGR (i.e. lower thermal efficiency) is justified by positive effects, such as reduced NOx emissions or a more controllable combustion of hydrogen. By means of a simple 1-D flame approach, the present study provides further insight into the flame behaviour and stability limits during a fuel switch from natural gas to hydrogen. In a following step, the same approach is used to investigate the flame behaviour in an EGR environment at two recirculation temperatures. The results show that if a hydrogen-fired, diffusion-type combustor is combined with sufficiently high EGR ratios, NOx emissions are potentially in the order of a state-of-the-art diffusion-type combustor fired with natural gas. In addition, based on the calculated laminar flame speeds and extinction strain rates, the higher reactivity of hydrogen could potentially be controlled by employing EGR. However, relevant literature suggests that stronger dilution might be required to compensate for the additional impact of turbulence-chemistry interaction in real application which could lead to flame stabilization issues and higher NOx emissions. Moreover, considering the industry efforts to develop hydrogen-capable premixed-type combustors, the results show that EGR has no significantly positive influence on the reactivity of a premixed pure hydrogen flame. The question regarding the preferred EGR temperature is addressed but cannot be answered conclusively.

Author(s):  
Jason John Dennis ◽  
Thomas Bexten ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Patrick Preuster

Abstract One of the main challenges currently hindering the transition to energy systems based on renewable power generation is grid stability. To compensate for the volatility of wind- and solar-based power generation, storage facilities able to adapt to seasonal and short term differences in energy production and demand are required. Liquid Organic Hydrogen Carriers (LOHCs) represent a viable method of chemically binding elemental hydrogen, offering opportunities for largescale and safe energy storage. In times of energy shortage, flexible and dispatchable power generation technologies such as gas turbines can be fueled by hydrogen stored in this manner. Hydrogen can be released from its liquid carrier via an endothermic dehydrogenation reaction using waste heat provided by the gas turbine. This gaseous hydrogen can be supplied to the gas turbine combustion chamber using a hydrogen compressor. In the present study a steady state model is developed in order to analyse the heat-integrated combination of a 7.7 MW hydrogen-fired gas turbine and a H18-DBT/H0-DBT LOHC system. For the best-performing parameter set the effective storage density of the LOHC oil comes to 1.5 kWh/L. This value is situated in-between that of compressed hydrogen at 350 bar (1.01 kWh/L) and liquid hydrogen (2.33 kWh/L). Concurrently, the corresponding energy required for hydrogen compression reduces the overall system efficiency to 22.00 % (ηGT = 30.15%). The resulting optimal electricity yield, being a product of these two values, amounts to 0.33 kWhel/L.


Author(s):  
Thomas Bexten ◽  
Sophia Jörg ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Pei Liu ◽  
...  

Abstract Climate science shows that the limitation of global warming requires a rapid transition towards net-zero emissions of greenhouse gases (GHG) on a global scale. Expanding renewable power generation is seen as an imperative measure within this transition. To compensate for the inherent volatility of renewable power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral hydrogen or in combination with carbon capture plants, a GHG-neutral gas turbine operation could be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of a gas turbine, the present study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature. A reduction in thermal efficiency can be observed as well as non-negligible changes of relevant process variables. These changes are more distinctive at a higher recirculation temperature


Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs ◽  
...  

Many energy supply systems around the world are currently undergoing a phase of transition characterized by a continuing increase in installed renewable power generation capacities. The inherent volatility and limited predictability of renewable power generation pose various challenges for an efficient system integration of these capacities. One approach to manage these challenges is the deployment of small-scale dispatchable power generation and storage units on a local level. In this context, gas turbine cogeneration units, which are primarily tasked with the provision of power and heat for industrial consumers, can play a significant role, if they are equipped with a sufficient energy storage capacity allowing for a more flexible operation. The present study investigates a system configuration, which incorporates a heat-driven industrial gas turbine interacting with a wind farm providing volatile renewable power generation. The required energy storage capacity is represented by an electrolyzer and a pressure vessel for intermediate hydrogen storage. The generated hydrogen can be reconverted to electricity and process heat by the gas turbine. The corresponding operational strategy for the overall system aims at an optimal integration of the volatile wind farm power generation on a local level. The study quantifies the impact of selected system design parameters on the quality of local wind power system integration, that can be achieved with a specific set of parameters. In addition, the impact of these parameters on the reduction of CO2 emissions due to the use of hydrogen as gas turbine fuel is quantified. In order to conduct these investigations, detailed steady-state models of all required system components were developed. These models enable accurate simulations of the operation of each component in the complete load range. The calculation of the optimal operational strategy is based on an application of the dynamic programming algorithm. Based on this model setup, the operation of the overall system configuration is simulated for each investigated set of design parameters for a one-year period. The simulation results show that the investigated system configuration has the ability to significantly increase the level of local wind power integration. The parameter variation reveals distinct correlations between the main design parameters of the storage system and the achievable level of local wind power integration. Regarding the installed electrolyzer power consumption capacity, smaller additional benefits of capacity increases can be identified at higher levels of power consumption capacity. Regarding the geometrical volume of the hydrogen storage, it can be determined that the storage volume loses its limiting character on the operation of the electrolyzer at a characteristic level. The additional investigation of the CO2 emission reduction reveals a direct correlation between the level of local wind power integration and the achievable level of CO2 emission reduction.


2021 ◽  
Author(s):  
Thomas Bexten ◽  
Tobias Sieker ◽  
Manfred Wirsum

Abstract Hydrogen-fired gas turbines have the potential to play an important role in future CO2-neutral energy and industry sectors. A prerequisite for the operation of hydrogen-fired gas turbines is the availability of sufficient quantities of hydrogen. The combination of electrolysis and renewable power generation is currently considered the most relevant pathway for the large-scale production of CO2-neutral hydrogen. Regarding the fuel supply of hydrogen-fired gas turbines, this pathway is associated with various technical and economic challenges. This applies in particular to configurations in which electrolyzers and hydrogen storage capacities are installed directly at gas turbine sites to avoid hydrogen transport. Considering an exemplary system configuration, the present study extends prior model-based investigations by focusing on the economic viability of the on-site fuel supply of hydrogen-fired gas turbines. The impact of various design parameters and operational strategies is analyzed using the Levelized Cost of Hydrogen as the main economic indicator. The study reveals that the investigated on-site hydrogen production is not economically viable within the current (2019) framework of the German energy sector. Assuming the extensive availability of renewable power generation in the long-term, additional investigations indicate that on-site hydrogen production and storage systems for gas turbines could potentially become economically viable if various advantageous conditions are met. These conditions include a sufficient availability of inexpensive renewable power for the operation of electrolyzers as well as a sufficient utilization of on-site hydrogen storage capacities to justify corresponding capital expenditures.


Author(s):  
Thomas Bexten ◽  
Tobias Sieker ◽  
Manfred Wirsum

Abstract Hydrogen-fired gas turbines have the potential to play an important role in future CO2-neutral energy and industry sectors. A prerequisite for the operation of hydrogen-fired gas turbines is the availability of sufficient quantities of hydrogen. The combination of electrolysis and renewable power generation is currently considered the most relevant pathway for the large-scale production of CO2-neutral hydrogen. Regarding the fuel supply of hydrogen-fired gas turbines, this pathway is associated with various technical and economic challenges. This applies in particular to configurations in which electrolyzers and hydrogen storage capacities are installed directly at gas turbine sites to avoid hydrogen transport. Considering an exemplary system configuration, the present study extends prior model-based investigations by focusing on the economic viability of the on-site fuel supply of hydrogen-fired gas turbines. The impact of various design parameters and operational strategies is analyzed using the Levelized Cost of Hydrogen as the main economic indicator. The study reveals that the investigated on-site hydrogen production is not economically viable within the current (2019) framework of the German energy sector. Assuming the extensive availability of renewable power generation in the long-term, additional investigations indicate that on-site hydrogen production and storage systems for gas turbines could potentially become economically viable if various advantageous conditions are met. These conditions include a sufficient availability of inexpensive renewable power for the operation of electrolyzers as well as a sufficient utilization of on-site hydrogen storage capacities to justify corresponding capital expenditures.


Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs ◽  
...  

Many energy supply systems around the world are currently undergoing a phase of transition characterized by a continuing increase in installed renewable power generation capacities. The inherent volatility and limited predictability of renewable power generation pose various challenges for an efficient system integration of these capacities. One approach to manage these challenges is the deployment of small-scale dispatchable power generation and storage units on a local level. In this context, gas turbine cogeneration units, which are primarily tasked with the provision of power and heat for industrial consumers, can play a significant role if they are equipped with a sufficient energy storage capacity allowing for a more flexible operation. The present study investigates a system configuration which incorporates a heat-driven industrial gas turbine interacting with a wind farm providing volatile renewable power generation. The required energy storage capacity is represented by an electrolyzer and a pressure vessel for intermediate hydrogen storage. The generated hydrogen can be reconverted to electricity and process heat by the gas turbine. The corresponding operational strategy for the overall system aims at an optimal integration of the volatile wind farm power generation on a local level. The study quantifies the impact of selected system design parameters on the quality of local wind power system integration that can be achieved with a specific set of parameters. In addition, the impact of these parameters on the reduction of CO2 emissions due to the use of hydrogen as gas turbine fuel is quantified. In order to conduct these investigations, detailed steadystate models of all required system components were developed. These models enable accurate simulations of the operation of each component in the complete load range. The calculation of the optimal operational strategy is based on an application of the Dynamic Programming algorithm. Based on this model setup, the operation of the overall system configuration is simulated for each investigated set of design parameters for a one-year period. The simulation results show that the investigated system configuration has the ability to significantly increase the level of local wind power integration. The parameter variation reveals distinct correlations between the main design parameters of the storage system and the achievable level of local wind power integration. Regarding the installed electrolyzer power consumption capacity, smaller additional benefits of capacity increases can be identified at higher levels of power consumption capacity. Regarding the geometrical volume of the hydrogen storage, it can be determined that the storage volume loses its limiting character on the operation of the electrolyzer at a characteristic level. The additional investigation of the CO2 emission reduction reveals a direct correlation between the level of local wind power integration and the achievable level of CO2 emission reduction.


Author(s):  
W. Kappis ◽  
S. Florjancic ◽  
C. Marchmont ◽  
E. Freitag

Market requirements for the gas turbine business have significantly changed in the last years due to a stronger demand for lifecycle cost optimization and the increased share of renewable energy. Gas turbine technology development focus must be adapted accordingly. The need for increased efficiency throughout the operation range, particularly at part load, requires more accurate and faster design methods and prediction capabilities. At the same time, technologies must be developed and validated to increased flexibility in many areas, including unlimited operation range (without aerodynamic, mechanical or emission constraints), fuel types and composition, and faster ramp up rates (despite the increased thermal stress to gas turbine components) to stabilize the grid and to compensate for intermittent renewable power generation. Further lifecycle optimization counts on new technologies in reconditioning, lifetime monitoring and improved lifetime prediction. This paper provides an overview of the recent research and development activities, the approach to bring them into a product and the resulting trend in Alstom gas turbine technologies.


1996 ◽  
Vol 118 (3) ◽  
pp. 534-540 ◽  
Author(s):  
T. Nakata ◽  
M. Sato ◽  
T. Ninomiya ◽  
T. Hasegawa

Developing integrated coal gasification combined-cycle systems ensures cost-effective and environmentally sound options for supplying future power generation needs. The reduction of NOx emissions and increasing the inlet temperature of gas turbines are the most significant issues in gas turbine development in Integrated Coal Gasification Combined Cycle (IGCC) power generation systems. The coal gasified fuel, which is produced in a coal gasifier of an air-blown entrained-flow type has a calorific value as low as 1/10 of natural gas. Furthermore, the fuel gas contains ammonia when a gas cleaning system is a hot type, and ammonia will be converted to nitrogen oxides in the combustion process of a gas turbine. This study is performed in a 1500°C-class gas turbine combustor firing low-Btu coal-gasified fuel in IGCC systems. An advanced rich-lean combustor of 150-MW class gas turbine was designed to hold stable combustion burning low-Btu gas and to reduce fuel NOx emissions from the ammonia in the fuel. The main fuel and the combustion air are supplied into a fuel-rich combustion chamber with strong swirl flow and make fuel-rich flame to decompose ammonia into intermediate reactants such as NHi and HCN. The secondary air is mixed with primary combustion gas dilatorily to suppress the oxidization of ammonia reactants in fuel-lean combustion chamber and to promote a reducing process to nitrogen. By testing under atmospheric pressure conditions, the authors have obtained a very significant result through investigating the effect of combustor exit gas temperature on combustion characteristics. Since we have ascertained the excellent performance of the tested combustor through our extensive investigation, we wish to report on the results.


Author(s):  
A. Haj Ayed ◽  
K. Kusterer ◽  
H. H.-W. Funke ◽  
J. Keinz ◽  
M. Kazari ◽  
...  

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) hydrogen combustion. Thus, the development of DLN hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel is being developed since years to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. For the low NOx Micromix hydrogen application the paper presents a numerical study showing the further potential to reduce the number of hydrogen injectors by increasing the hydrogen injector diameter significantly by more than 350% resulting in an enlarged diffusion-type flame size. Experimental data is compared to numerical results for one configuration with increased hydrogen injector size and two different aerodynamic flame stabilization design laws. The applied design law for aerodynamic stabilization of the miniaturized flamelets is scaled according to the hydrogen injector size while maintaining equal thermal energy output and significantly low NOx emissions. Based on this parameter variation study the impact of different geometric parameters on flow field, flame structure and NOx formation is investigated by the numerical study. The numerical results show that the low NOx emission characteristics and the Micromix flame structure are maintained at larger hydrogen injector size and reveal even further potential for energy density increase and a reduction of combustor complexity and production costs.


Sign in / Sign up

Export Citation Format

Share Document