Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle

Author(s):  
A. Haj Ayed ◽  
K. Kusterer ◽  
H. H.-W. Funke ◽  
J. Keinz ◽  
M. Kazari ◽  
...  

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) hydrogen combustion. Thus, the development of DLN hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel is being developed since years to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. For the low NOx Micromix hydrogen application the paper presents a numerical study showing the further potential to reduce the number of hydrogen injectors by increasing the hydrogen injector diameter significantly by more than 350% resulting in an enlarged diffusion-type flame size. Experimental data is compared to numerical results for one configuration with increased hydrogen injector size and two different aerodynamic flame stabilization design laws. The applied design law for aerodynamic stabilization of the miniaturized flamelets is scaled according to the hydrogen injector size while maintaining equal thermal energy output and significantly low NOx emissions. Based on this parameter variation study the impact of different geometric parameters on flow field, flame structure and NOx formation is investigated by the numerical study. The numerical results show that the low NOx emission characteristics and the Micromix flame structure are maintained at larger hydrogen injector size and reveal even further potential for energy density increase and a reduction of combustor complexity and production costs.

Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Mangani ◽  
Antonio Asti ◽  
Gianni Ceccherini ◽  
...  

One of the driving requirements in gas turbine design is emissions reduction. In the mature markets (especially the North America), permits to install new gas turbines are granted provided emissions meet more and more restrictive requirements, in a wide range of ambient temperatures and loads. To meet such requirements, design techniques have to take advantage also of the most recent CFD tools. As a successful example of this, this paper reports the results of a reactive 3D numerical study of a single-can combustor for the GE10 machine, recently updated by GE-Energy. This work aims to evaluate the benefits on the flame shape and on NOx emissions of a new pilot-system located on the upper part of the liner. The former GE10 combustor is equipped with fuel-injecting-holes realizing purely diffusive pilot-flames. To reduce NOx emissions from the current 25 ppmvd@15%O2 to less than 15 ppmvd@15%O2 (in the ambient temperature range from −28.9°C to +37.8°C and in the load range from 50% and 100%), the new version of the combustor is equipped with 4 swirler-burners realizing lean-premixed pilot flames; these flames in turn are stabilized by a minimal amount of lean-diffusive sub-pilot-fuel. The overall goal of this new configuration is the reduction of the fraction of fuel burnt in diffusive flames, lowering peak temperatures and therefore NOx emissions. To analyse the new flame structure and to check the emissions reduction, a reactive RANS study was performed using STAR-CD™ package. A user-defined combustion model was used, while to estimate NOx emissions a specific scheme was also developed. Three different ambient temperatures (ISO, −28.9°C and 37.8°C) were simulated. Results were then compared with experimental measurements (taken both from the engine and from the rig), resulting in reasonable agreement. Finally, an additional simulation with an advanced combustion model, based on the laminar flamelet approach, was performed. The model is based on the G-Equation scheme but was modified to study partially premixed flames. A geometric procedure to solve G-Equation was implemented as add-on in STAR-CD™.


Author(s):  
H. H.-W. Funke ◽  
S. Boerner ◽  
J. Keinz ◽  
K. Kusterer ◽  
A. Haj Ayed ◽  
...  

In the future low pollution power generation can be achieved by application of hydrogen as a possible alternative gas turbine fuel if the hydrogen is produced by renewable energy sources such as wind energy or biomass. The utilization of existing IGCC power plant technology with the combination of low cost coal as a bridge to renewable energy sources such as biomass can support the international effort to reduce the environmental impact of electricity generation. Against this background the dry low NOx Micromix combustion principle for hydrogen is developed for years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen and burns in multiple miniaturized diffusion-type flames. The two advantages of this principle are the inherent safety against flash-back and the low NOx concentrations due to a very short residence time of reactants in the flame region of the micro-flames. The paper presents experimental results showing the significant reduction of NOx emissions at high equivalence ratios and at simultaneously increased energy density under preheated atmospheric conditions. Furthermore the paper presents the feasibility of enlarged Micromix hydrogen injectors reducing the number of required injectors of a full-scale Micromix combustion chamber while maintaining the thermal energy output with significantly low NOx formation. The experimental investigations are accompanied by 3D numerical reacting flow simulations based on a simplified hydrogen combustion model. Comparison with experimental results shows good agreement with respect to flame structure, shape and anchoring position. Thus, the experimental and numerical results highlight further potential of the Micromix combustion principle for low NOx combustion of hydrogen in industrial gas turbine applications.


Author(s):  
Harald H. W. Funke ◽  
Jan Keinz ◽  
Karsten Kusterer ◽  
Anis Haj Ayed ◽  
Masahide Kazari ◽  
...  

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOx (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOx emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOx emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOx emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOx formation.


Author(s):  
H. H.-W. Funke ◽  
J. Keinz ◽  
K. Kusterer ◽  
A. Haj Ayed ◽  
M. Kazari ◽  
...  

Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to Dry Low NOx (DLN) hydrogen combustion. The DLN Micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOx emissions. This combustion principle for air-breathing engines is based on cross-flow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flash-back and with low NOx-emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN Micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high energy injectors, while the DLN Micromix characteristics of the design point, under part load conditions and under off-design operation are maintained. Atmospheric test rig data on NOx emissions, optical flame structure and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized Micromix flamelets is particularly investigated numerically for the resulting flow field, the flame structure and NOx formation.


Author(s):  
C. Striegan ◽  
A. Haj Ayed ◽  
K. Kusterer ◽  
H. H.-W. Funke ◽  
S. Loechle ◽  
...  

Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation once it can be combined with the use of renewable energy sources for its production. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers great potential to burn hydrogen in gas turbines at very low NOx emissions. The mixing of hydrogen and air is based on the jet in cross-flow (JICF) principle, where the gaseous fuel is injected perpendicular into the crossing air stream. The reaction takes place in multiple miniaturized diffusion flames with an inherent safety against flashback and the potential of low NOx emissions due to a short residence time of the reactants in the flame region. Aiming to further develop an existing burner design in terms of an increased energy density, a redesign is required in order to stabilize the flames at higher mass flows while maintaining low emission levels. For this reason, a systematic numerical analysis using CFD is carried out, to identify the interactions of combustion, radiation and heat conduction in the adjacent burner wall by conjugate heat transfer (CHT) methods. Different combustion models are applied, starting from a hybrid eddy break-up model to more advanced turbulence-chemistry interaction approaches considering detailed chemical mechanisms. Those allow an improved prediction of the different NO-pathways of production and consumption. The results of the simulations are in good agreement with atmospheric test rig data of optical flame structure, measured combustor surface temperatures and NOx emissions. The numerical methods help reducing the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Further on, the more detailed CFD-simulations support the understanding of decisive mechanisms to reduce the numerical work to the most important models for further industrial applications in future.


2021 ◽  
Author(s):  
Nils Hendrik Petersen ◽  
Thomas Bexten ◽  
Christian Goßrau ◽  
Manfred Wirsum

Abstract To mitigate its impact on global climate, the power generation sector must strive towards a transition to net-zero emissions of greenhouse gases. This can be achieved by a massive penetration of renewable power generation. However, a high share of renewable power generation requires dispatchable and flexible power generation technologies such as gas turbines to maintain the stability of power grids. To achieve net-zero green house gas emissions, gas turbines have to be operated exclusively with carbon-neutral fuels. Hydrogen is a promising carbon-neutral fuel, although it comes along with several challenges regarding stable combustion. A possible measure to stabilize hydrogen combustion is the partial external recirculation of exhaust gases (EGR). In a previous study, the authors presented a model-based thermodynamic analysis of an industrial gas turbine featuring EGR. The next step was to answer the question of whether the thermodynamically negative impact of EGR (i.e. lower thermal efficiency) is justified by positive effects, such as reduced NOx emissions or a more controllable combustion of hydrogen. By means of a simple 1-D flame approach, the present study provides further insight into the flame behaviour and stability limits during a fuel switch from natural gas to hydrogen. In a following step, the same approach is used to investigate the flame behaviour in an EGR environment at two recirculation temperatures. The results show that if a hydrogen-fired, diffusion-type combustor is combined with sufficiently high EGR ratios, NOx emissions are potentially in the order of a state-of-the-art diffusion-type combustor fired with natural gas. In addition, based on the calculated laminar flame speeds and extinction strain rates, the higher reactivity of hydrogen could potentially be controlled by employing EGR. However, relevant literature suggests that stronger dilution might be required to compensate for the additional impact of turbulence-chemistry interaction in real application which could lead to flame stabilization issues and higher NOx emissions. Moreover, considering the industry efforts to develop hydrogen-capable premixed-type combustors, the results show that EGR has no significantly positive influence on the reactivity of a premixed pure hydrogen flame. The question regarding the preferred EGR temperature is addressed but cannot be answered conclusively.


Author(s):  
H. H.-W. Funke ◽  
N. Beckmann ◽  
J. Keinz ◽  
S. Abanteriba

The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H2-CO) numerical analyses based on a skeletal H2/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.


Author(s):  
Oanh Nguyen ◽  
Scott Samuelsen

In view of increasingly stringent NOx emissions regulations on stationary gas turbines, lean combustion offers an attractive option to reduce reaction temperatures and thereby decrease NOx production. Under lean operation, however, the reaction is vulnerable to blowout. It is herein postulated that pilot hydrogen dopant injection, discretely located, can enhance the lean blowout performance without sacrificing overall performance. The present study addresses this hypothesis in a research combustor assembly, operated at atmospheric pressure, and fired on natural gas using rapid mixing injection, typical of commercial units. Five hydrogen injector scenarios are investigated. The results show that (1) pilot hydrogen dopant injection, discretely located, leads to improved lean blowout performance and (2) the location of discrete injection has a significant impact on the effectiveness of the doping strategy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vedant Dwivedi ◽  
Srikanth Hari ◽  
S. M. Kumaran ◽  
B. V. S. S. S. Prasad ◽  
Vasudevan Raghavan

Abstract Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.


Sign in / Sign up

Export Citation Format

Share Document