Reaction Model Development of Selected Aromatics as Relevant Molecules of a Kerosene Surrogate – The Importance of M-Xylene Within the Combustion of 1,3,5-Trimethylbenzene

2021 ◽  
Author(s):  
Astrid Ramirez Hernandez ◽  
Trupti Kathrotia ◽  
Torsten Methling ◽  
Marina Braun-Unkhoff ◽  
Uwe Riedel

Abstract The development of advanced reaction models to predict pollutant emissions in aero-engine combustors usually relies on surrogate formulations of a specific jet fuel for mimicking its chemical composition. 1,3,5-trimethylbenzene is one of the suitable components to represent aromatics species in those surrogates. However, a comprehensive reaction model for 1,3,5-trimethylbenzene combustion requires a mechanism to describe the m-xylene oxidation. In this work, the development of a chemical kinetic mechanism for describing the m-xylene combustion in a wide parameter range (i.e. temperature, pressure, and fuel equivalence ratios) is presented. The m-xylene reaction submodel was developed based on existing reaction mechanisms of similar species such as toluene and reaction pathways adapted from literature. The sub-model was integrated into an existing detailed mechanism that contains the kinetics of a wide range of n-paraffins, iso-paraffins, cyclo-paraffins, and aromatics. Simulation results for m-xylene were validated against experimental data available in literature. Results show that the presented m-xylene mechanism correctly predicts ignition delay times at different pressures and temperatures as well as laminar burning velocities at atmospheric pressure and various fuel equivalence ratios. At high pressure, some deviations of the calculated laminar burning velocity and the measured values are obtained at stoichiometric to rich equivalence ratios. Additionally, the model predicts reasonably well concentration profiles of major and intermediate species at different temperatures and atmospheric pressure.

Author(s):  
Astrid Yuliana Ramirez Hernandez ◽  
Trupti Kathrotia ◽  
Torsten Methling ◽  
Marina Braun-Unkhoff ◽  
Uwe Riedel

Abstract The development of advanced reaction models to predict pollutant emissions in aero-engine combustors usually relies on surrogate formulations of a specific jet fuel for mimicking its chemical composition. 1,3,5-trimethylbenzene is one of the suitable components to represent aromatics species in those surrogates. However, a comprehensive reaction model for 1,3,5-trimethylbenzene combustion requires a mechanism to describe the m-xylene oxidation. In this work, the development of a chemical kinetic mechanism for describing the m-xylene combustion in a wide parameter range (i.e. temperature, pressure, and fuel equivalence ratios) is presented. The m-xylene reaction sub-model was developed based on existing reaction mechanisms of similar species such as toluene and reaction pathways adapted from literature. The sub-model was integrated into an existing detailed mechanism that contains the kinetics of a wide range of n-paraffins, iso-paraffins, cyclo-paraffins, and aromatics. Simulation results for m-xylene were validated against experimental data available in literature. Results show that the presented m-xylene mechanism correctly predicts ignition delay times at different pressures and temperatures as well as laminar burning velocities at atmospheric pressure and various fuel equivalence ratios. At high pressure, some deviations of the calculated laminar burning velocity and the measured values are obtained at stoichiometric to rich equivalence ratios. Additionally, the model predicts reasonably well concentration profiles of major and intermediate species at different temperatures and atmospheric pressure.


Author(s):  
Michael V. Johnson ◽  
S. Scott Goldsborough ◽  
Timothy A. Smith ◽  
Steven S. McConnell

Continued interest in kinetically-modulated combustion regimes, such as HCCI and PCCI, poses a significant challenge in controlling the ignition timing due to the lack of direct control of combustion phasing hardware available in traditional SI and CI engines. Chemical kinetic mechanisms, validated based on fundamental data from experiments like rapid compression machines and shock tubes, offer reasonably accurate predictions of ignition timing; however utilizing these requires high computational cost making them impractical for use in engine control schemes. Empirically-derived correlations offer faster control, but are generally not valid beyond the narrow range of conditions over which they were derived. This study discusses initial work in the development of an ignition correlation based on a detailed chemical kinetic mechanism for three component gasoline surrogate, composed of n-heptane, iso-octane and toluene, or toluene reference fuel (TRF). Simulations are conducted over a wide range of conditions including temperature, pressure, equivalence ratio and dilution for a range of tri-component blends in order to produce ignition delay time and investigate trends in ignition as pressure, equivalence ratio, temperature and fuel reactivity are varied. A modified, Arrhenius-based power law formulation will be used in a future study to fit the computed ignition delay times.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 210-240
Author(s):  
Niklas Zettervall ◽  
Christer Fureby ◽  
Elna J. K. Nilsson

Methane is an important fuel for gas turbine and gas engine combustion, and the most common fuel in fundamental combustion studies. As Computational Fluid Dynamics (CFD) modeling of combustion becomes increasingly important, so do chemical kinetic mechanisms for methane combustion. Kinetic mechanisms of different complexity exist, and the aim of this study is to review commonly used detailed, reduced, and global mechanisms of importance for CFD of methane combustion. In this review, procedures of relevance to model development are outlined. Simulations of zero and one-dimensional configurations have been performed over a wide range of conditions, including addition of H2, CO2 and H2O, and the results are used in a final recommendation about the use of the different mechanisms. The aim of this review is to put focus on the importance of an informed choice of kinetic mechanism to obtain accurate results at a reasonable computational cost. It is shown that for flame simulations, a reduced mechanism with only 42 irreversible reactions gives excellent agreement with experimental data, using only 5% of the computational time as compared to the widely used GRI-Mech 3.0. The reduced mechanisms are highly suitable for flame simulations, while for ignition they tend to react too slow, giving longer than expected ignition delay time. For combustible mixtures with addition of hydrogen, carbon dioxide, or water, the detailed as well as reduced mechanisms generally show as good performance as for the corresponding simulations of pure methane/air mixtures.


2016 ◽  
Author(s):  
Guangying Yu ◽  
Omid Askari ◽  
Fatemeh Hadi ◽  
Ziyu Wang ◽  
Hameed Metghalchi ◽  
...  

Gas to Liquid (GTL), an alternative synthetic jet fuel derived from natural gas has gained significant attention recently due to its cleaner combustion characteristics when compared to conventional counterparts. The effect of chemical composition on key performance aspects such as ignition delay time, laminar burning speed, and emission characteristics have been experimentally studied. However, the development of chemical kinetics mechanism to predict those parameters for GTL fuel is still in its early stage. In this work, a detailed kinetics model (DKM) has been developed based on the chemical kinetics reported for GTL surrogate fuels. The DKM is applied to the chemical kinetic mechanism of 597 species and 3853 reactions. The DKM is employed in a constant internal energy and constant volume reactor to predict the ignition delay times for GTL and its three surrogates over a wide range of initial temperature, pressure and equivalence ratio. The ignition delay times predicted using DKM are validated with those reported in the literature. Furthermore, the CANTERA freely propagating 1D flame code is used in conjunction with the chemical kinetic mechanism to predict the laminar burning speeds for GTL fuel over a wide range of operating conditions.


Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 323-344
Author(s):  
Niklas Zettervall ◽  
Christer Fureby ◽  
Elna J. K. Nilsson

Development and validation of a new reduced dimethyl ether-air (DME) reaction mechanism is presented. The mechanism was developed using a modular approach that has previously been applied to several alkane and alkene fuels, and the present work pioneers the use of the modular methodology, with its underlying H/C1/O base mechanism, on an oxygenated fuel. The development methodology uses a well-characterized H/C1/O base mechanism coupled to a reduced set of fuel and intermediate product submechanisms. The mechanism for DME presented in this work includes 30 species and 69 irreversible reactions. When used in combustion simulation the mechanism accurately reproduced key combustion characteristics and the small size enables use in computationally demanding Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS). It has been developed to accurately predict, among other parameters, laminar burning velocity and ignition delay times, including the negative temperature regime. The evaluation of the mechanism and comparison to experimental data and several detailed and reduced mechanisms covers a wide range of conditions with respect to temperature, pressure and fuel-to-air ratio. There is good agreement with experimental data and the detailed reference mechanisms at all investigated conditions. The mechanism uses fewer reactions than any previously presented DME-air mechanism, without losing in predictability.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Guangying Yu ◽  
Hameed Metghalchi ◽  
Omid Askari ◽  
Ziyu Wang

The rate-controlled constrained-equilibrium (RCCE), a model order reduction method, has been further developed to simulate the combustion of propane/oxygen mixture diluted with nitrogen or argon. The RCCE method assumes that the nonequilibrium states of a system can be described by a sequence of constrained-equilibrium states subject to a small number of constraints. The developed new RCCE approach is applied to the oxidation of propane in a constant volume, constant internal energy system over a wide range of initial temperatures and pressures. The USC-Mech II (109 species and 781 reactions, without nitrogen chemistry) is chosen as chemical kinetic mechanism for propane oxidation for both detailed kinetic model (DKM) and RCCE method. The derivation for constraints of propane/oxygen mixture starts from the eight universal constraints for carbon-fuel oxidation. The universal constraints are the elements (C, H, O), number of moles, free valence, free oxygen, fuel, and fuel radicals. The full set of constraints contains eight universal constraints and seven additional constraints. The results of RCCE method are compared with the results of DKM to verify the effectiveness of constraints and the efficiency of RCCE. The RCCE results show good agreement with DKM results under different initial temperature and pressures, and RCCE also reduces at least 60% CPU time. Further validation is made by comparing the experimental data; RCCE shows good agreement with shock tube experimental data.


Author(s):  
Chitralkumar V. Naik ◽  
Karthik V. Puduppakkam ◽  
Abhijit Modak ◽  
Cheng Wang ◽  
Ellen Meeks

Validated surrogate models have been developed for two Fisher-Tropsch (F-T) fuels. The models started with a systematic approach to determine an appropriate surrogate fuel composition specifically tailored for the two alternative jet-fuel samples. A detailed chemical kinetic mechanism has been assembled for these model surrogates starting from literature sources, and then improved to ensure self-consistency of the kinetics and thermodynamic data. This mechanism has been tested against fundamental laboratory data on auto-ignition times, laminar flame-speeds, extinction strain rates, and NOx emissions. Literature data used to validate the mechanism include both the individual surrogate-fuel components and actual F-T fuel samples where available. As part of the validation, simulations were performed for a wide variety of experimental configurations, as well as a wide range of temperatures and equivalence ratios for fuel/air mixtures. Comparison of predicted surrogate-fuel behavior against data on real F-T fuel behavior also show the effectiveness of the surrogate-matching approach and the accuracy of the detailed-kinetics mechanisms. The resulting validated mechanism has been also reduced through application of automated mechanism reduction techniques to provide progressively smaller mechanisms, with different degrees of accuracy, that are reasonable for use in CFD simulations employing detailed kinetics.


Author(s):  
John C. Y. Lee ◽  
Philip C. Malte ◽  
Michael A. Benjamin

Low emissions of NOx are obtained for a wide range of liquid fuels by using a staged prevaporizing-premixing injector. The injector relies on two stages of air temperature and fires into a laboratory jet-stirred reactor operated at atmospheric pressure and nominal ϕ of 0.6. The liquid fuels burned are methanol, normal alkanes from pentane to hexadecane, benzene, toluene, two grades of light naphtha and four grades of No. 2 diesel fuel. Additionally, natural gas, ethane and industrial propane are burned. For experiments conducted for 1790 K combustion temperature and 2.3±0.1 ms combustion residence time, the NOx (adjusted to 15% O2 dry) varies from a low of 3.5 ppmv for methanol to a high of 11.5 ppmv for No. 2 diesel fuel. For the most part, the NOx and CO are positively correlated with the fuel carbon to hydrogen ratio (C/H). Chemical kinetic modeling suggests the increase in NOx with C/H ratio is caused in significant part by the increasing super-equilibrium concentrations of O-atom created by the increasing levels of CO burning in the jet-stirred reactor. Fuel bound nitrogen also contributes NOx for the burning of the diesel fuel. This paper describes the staged prevaporizing-premixing injector, the examination of the injector and the NOx and CO measurements and their interpretation. Optical measurements, using beams of He-Ne laser radiation passed across the outlet stream of the injector, indicate complete vaporization and a small variation in the cross-stream averaged fuel/air ratio. The later is determined by measuring the standard deviation and mean of the transmission of the laser beam passed through the stream. Additional measurements and inspections indicate no pressure oscillations within the injector and no gum and carbon deposition. Thus, the NOx and CO measurements are obtained for fully vaporized, well premixed conditions devoid of preflame reactions within the injector.


Author(s):  
Torsten Methling ◽  
Sandra Richter ◽  
Trupti Kathrotia ◽  
Marina Braun-Unkhoff ◽  
Clemens Naumann ◽  
...  

Over the last years, global concerns about energy security and climate change have resulted in many efforts focusing on the potential utilization of non-petroleum-based, i.e. bio-derived, fuels. In this context, n-butanol has recently received high attention because it can be produced sustainably. A comprehensive knowledge about its combustion properties is inevitable to ensure an efficient and smart use of n-butanol if selected as a future energy carrier. In the present work, two major combustion characteristics, here laminar flame speeds applying the cone-angle method and ignition delay times applying the shock tube technique, have been studied, experimentally and by modeling exploiting detailed chemical kinetic reaction models, at ambient and elevated pressures. The in-house reaction model was constructed applying the RMG-method. A linear transformation method recently developed, linTM, was exploited to generate a reduced reaction model needed for an efficient, comprehensive parametric study of the combustion behavior of n-butanol/hydrocarbon mixtures. All experimental data were found to agree with the model predictions of the in-house reaction model, for all temperatures, pressures, and fuel-air ratios. On the other hand, calculations using reaction models from the open literature mostly overpredict the measured ignition delay times by about a factor of two. The results are compared to those of ethanol, with ignition delay times very similar and laminar flame speeds of n-butanol slightly lower, at atmospheric pressure.


Author(s):  
Hua Xiao ◽  
Agustin Valera-Medina

To explore the potential of ammonia-based fuel as an alternative fuel for future power generation, studies involving robust mathematical, chemical, thermofluidic analyses are required to progress toward industrial implementation. Thus, the aim of this study is to identify reaction mechanisms that accurately represent ammonia kinetics over a large range of conditions, particularly at industrial conditions. To comprehensively evaluate the performance of the chemical mechanisms, 12 mechanisms are tested in terms of flame speed, NOx emissions and ignition delay against the experimental data. Freely propagating flame calculations indicate that Mathieu mechanism yields the best agreement within experimental data range of different ammonia concentrations, equivalence ratios, and pressures. Ignition delay times calculations show that Mathieu mechanism and Tian mechanism yield the best agreement with data from shock tube experiments at pressures up to 30 atm. Sensitivity analyses were performed in order to identify reactions and ranges of conditions that require optimization in future mechanism development. The present study suggests that the Mathieu mechanism and Tian mechanism are the best suited for the further study on ammonia/hydrogen combustion chemistry under practical industrial conditions. The results obtained in this study also allow gas turbine designers and modelers to choose the most suitable mechanism for combustion studies.


Sign in / Sign up

Export Citation Format

Share Document