Comparison of Performance of Flamelet Generated Manifold Model With That of Finite Rate Combustion Model for Hydrogen Blended Flames

2021 ◽  
Author(s):  
Sourabh Shrivastava ◽  
Ishan Verma ◽  
Rakesh Yadav ◽  
Pravin Nakod ◽  
Stefano Orsino

Abstract International Air Transport Association (IATA) sets a 50% reduction in 2005 CO2 emissions levels by 2050, with no increase in net emissions after 2020 [1]. The association also expects the global aviation demand to double to 8.2 billion passengers per year by 2037. These issues have prompted the aviation industry to focus intensely on adopting sustainable aviation fuels (SAF). Further, reduction in CO2 emission is also an active area of research for land-based power generation gas turbine engines. And fuels with high hydrogen content or hydrogen blends are regarded as an essential part of future power plants. Therefore, clean hydrogen and other hydrogen-based fuels are expected to play a critical role in reducing greenhouse gas emissions in the future. However, the massive difference in hydrogen’s physical properties compared to hydrocarbon fuels, ignition, and flashback issues are some of the major concerns, and a detailed understanding of hydrogen combustion characteristics for the conditions at which gas turbines operate is needed. Numerical combustion analyses can play an essential role in exploring the combustion performance of hydrogen as an alternative gas turbine engine fuel. While several combustion models are available in the literature, two of the most preferred models in recent times are the flamelet generated manifold (FGM) model and finite-rate (FR) combustion model. FGM combustion model is computationally economical compared to the detailed/reduced chemistry modeling using a finite-rate combustion model. Therefore, this paper aims to understand the performance of the FGM model compared to detailed chemistry modeling of turbulent flames with different levels of hydrogen blended fuels. In this paper, a detailed comparison of different combustion characteristics like temperature, species, flow, and NOx distribution using FGM and finite rate combustion models is presented for three flame configurations, including the DLR Stuttgart jet flame [2], Bluff body stabilized Sydney HM1 flame [3] and dry-low-NOx hydrogen micro-mix combustion chamber [4]. One of the FGM model’s essential parameters is to select a suitable definition of the reaction progress variable. The reaction progress variable should monotonically increase from the unburnt region to the burnt region. The definition is first studied using a 1D premixed flame with different blend ratios and then used for the actual cases. 2D/3D simulations for the identified flames are performed using FGM and finite rate combustion models. Numerical results from both these models are compared with the available experimental data to understand FGM’s applicability. The results show that the FGM model performs reasonably well for pure hydrogen and hydrogen blended flames.

Author(s):  
B. de Jager ◽  
J. B. W. Kok

In this paper combustion of propane under gas turbine conditions is investigated with a focus on the chemistry and chemical kinetics in turbulent flames. The work is aimed at efficient and accurate modeling of the chemistry of heavy hydrocarbons, ie. hydrocarbons with more than one carbon atom, as occurring in liquid fuels for gas turbine application. On the basis of one dimensional laminar flame simulations with detailed chemistry, weight factors are determined for optimal projection of species concentrations on one or several composed concentrations, using the Computational Singular Perturbation (CSP) method. This way the species concentration space of the detailed mechanism is projected on a one dimensional space spanned by the reaction progress variable for use in a turbulent simulation. In the projection process a thermochemical database is used to relate with the detailed chemistry of the laminar flame simulations. Transport equations are formulated in a RaNS code for the mean and variance of the reaction progress variable. The turbulent chemical reaction source term is calculated by presumed shape probability density function averaging of the laminar source term in the thermochemical database. The combined model is demonstrated and validated in a simulation of a turbulent premixed prevaporized swirling propane/air flame at atmospheric pressure. Experimental data are available for the temperature field, the velocity field and the unburnt hydrocarbon concentrations. The trends produced by CFI compare reasonable to the experiments.


Author(s):  
Andrea Donini ◽  
Robert J. M. Bastiaans ◽  
Jeroen A. van Oijen ◽  
L. Philip H. de Goey

In the present paper, a computational analysis of a high pressure confined premixed turbulent methane/air jet flames with heat loss to the walls is presented. In this scope, chemistry is reduced by the use of the flamelet generated manifold (FGM) method and the fluid flow is modeled in an large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) context. The reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the turbulence effect on the reaction is represented by the progress variable variance. A generic lab scale burner for methane high-pressure (5 bar) high-velocity (40 m/s at the inlet) preheated jet is adopted for the simulations, because of its gas-turbine relevant conditions. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. Furthermore, the present analysis indicates that the physical and chemical processes controlling carbon monoxide (CO) emissions can be captured only by means of unsteady simulations.


Author(s):  
George Mallouppas ◽  
Graham Goldin ◽  
Yongzhe Zhang ◽  
Piyush Thakre ◽  
Niveditha Krishnamoorthy ◽  
...  

An experimental variant of a commercial swirl burner for industrial gas turbine combustors operating at 3 bar is numerically investigated using high-fidelity Computational Fluid Dynamics models using STAR-CCM+ v11.06. This work presents the computational results of the SGT-100 Dry Low Emission gas turbine provided by Siemens Industrial Turbomachinery Ltd. The related experimental study was performed at the DLR Institute of Combustion Technology, Stuttgart, Germany. The objective of this work is to compare the performance of the Flamelet Generated Manifold model, which is the widely accepted combustion model in Gas Turbines with the Complex Chemistry model. In particular this work examines the flame shape and position, pollutant formation predicted by the aforementioned models with Large Eddy Simulations. Mean and RMS quantities of the flow field, flame temperatures and major species are presented and compared with the experiments. The results show that the predictions are insensitive on the meshing strategy and at the evaluated mesh sizes of ∼10 million and ∼44 million cells. The mean and RMS errors are ∼8% compared to the reported experiments and these differences are within the measurement errors. The results show that the calculated flame positions are in very good agreement with the reported measurements and the typical M-shape flame is reproduced independent of the combustion model. Pollutant formation in the combustor predicted by two combustion models is scrutinised. The predicted NO and CO emissions levels are in agreement with the literature.


Author(s):  
A. Donini ◽  
S. M. Martin ◽  
R. J. M. Bastiaans ◽  
J. A. van Oijen ◽  
L. P. H. de Goey

In the present paper a computational analysis of a confined premixed turbulent methane/air jet flame is presented. In this scope, chemistry is reduced by the use of the Flamelet Generated Manifold (FGM) method [1, 2], and the fluid flow is modeled in a RANS context. In the FGM technique the reaction progress of the flame is generally described by a few control variables, for which a transport equation is solved during runtime. The flamelet system is computed in a pre-processing stage, and a manifold with all the information about combustion is stored in a tabulated form. In the present implementation the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the turbulence effect on the reaction is represented by the progress variable variance. The turbulence-chemistry interaction is considered through the use of a presumed pdf approach. A generic lab scale burner for high-velocity preheated jets is used for validation [3, 4]. It consists of a rectangular confinement, and an off-center positioning of the jet nozzle enables flame stabilization by recirculation of hot combustion products. The inlet speed is appropriately high, in order to be close to the blow out limit. Flame structures were visualized by OH* chemiluminescence imaging and planar laser-induced fluorescence of the OH radical. Laser Raman scattering was used to determine concentrations of the major species and the temperature. Velocity fields were measured with particle image velocimetry. The important effect of conductive heat loss to the walls is included in the FGM chemistry reduction method in a RANS context, in order to predict the evolution and description of a turbulent jet flame in high Reynolds number flow conditions. Comparisons of various mean fields (velocities, temperatures) with RANS results are shown. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort.


Author(s):  
Andrea Donini ◽  
Robert J. M. Bastiaans ◽  
Jeroen A. van Oijen ◽  
L. Philip H. de Goey

Gas turbines are one of the most important energy conversion methods in the world today. This is because using gas turbines, large scale, high efficiency, low cost and low emission energy production is possible. For this type of engines, low pollutants emissions can be achieved by very lean premixed combustion systems. Numerical simulation is foreseen to provide a tremendous increase in gas turbine combustors design efficiency and quality over the next future. However, the numerical simulation of modern stationary gas-turbine combustion systems represents a very challenging task. Several numerical models have been developed in order to reduce the costs of flame simulations for engineering applications. In the present paper the Flamelet-Generated Manifold (FGM) chemistry reduction method is implemented and extended for the inclusion of all the features that are typically observed in stationary gas-turbine combustion. These consist of stratification effects, heat loss and turbulence. The latter is included by coupling FGM with the Reynolds Averaged Navier Stokes (RANS) model. Three control variables are included for the chemistry representation: the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the stratification effect is expressed by the mixture fraction. The interaction between chemistry and turbulence is considered through a presumed probability density function (PDF) approach, which is considered for progress variable and mixture fraction. This results in two extra control variables: progress variable variance and mixture fraction variance. The resulting manifold is therefore five-dimensional, in which the dimensions are progress variable, enthalpy, mixture fraction, progress variable variance and mixture fraction variance. A highly turbulent and swirling flame in a gas turbine model combustor is computed in order to test the 5-D FGM implementation. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. The implemented combustion model retains most of the physical accuracy of a detailed simulation while drastically reducing its computational time, paving the way for new developments of alternative fuel usage in a cleaner and more efficient combustion.


1996 ◽  
Vol 118 (3) ◽  
pp. 201-208 ◽  
Author(s):  
S. M. Correa ◽  
I. Z. Hu ◽  
A. K. Tolpadi

Computer modeling of low-emissions gas-turbine combustors requires inclusion of finite-rate chemistry and its intractions with turbulence. The purpose of this review is to outline some recent developments in and applications of the physical models of combusting flows. The models reviewed included the sophisticated and computationally intensive velocity-composition pdf transport method, with applications shown for both a laboratory flame and for a practical gas-turbine combustor, as well as a new and computationally fast PSR-microstructure-based method, with applications shown for both premixed and nonpremixed flames. Calculations are compared with laserbased spectroscopic data where available. The review concentrates on natural-gas-fueled machines, and liquid-fueled machines operating at high power, such that spray vaporization effects can be neglected. Radiation and heat transfer is also outside the scope of this review.


Author(s):  
Graham Goldin ◽  
Yongzhe Zhang

The Flamelet Generated Manifold (FGM) model requires a reaction progress variable which is usually defined as a weighted sum of species mass fractions. This progress variable should increase monotonically as flamelet states progress from unburnt to chemical equilibrium. A favorable attribute of the progress variable is that the flamelet species should change gradually with the progress variable, which reduces sensitivity of these species to any predicted errors in the progress variable. Previous publications have presented optimization algorithms for specific flamelet operating conditions, including fuel and oxidizer compositions and temperatures, and pressures. This work applies the HEEDS optimization software to find optimal species weights for a range of fuels and operating conditions. The fuels included are methane, methane-hydrogen, n-dodecane and n-heptane, at fuel-oxidizer temperatures of 293K and 1000K, and pressures of 1 and 30 atmospheres. For manifolds modeled by constant pressure ignition reactors, the optimal progress variable weights using four species weights are {αCO2 = 1, αCO = 0.91, αH2O = 0.52, αH2 = 1}, and for eight species weights are {αCO2 = 1, αCO = 0.91, αH2O = 0.51, αH2 = 1, αC2H2 = 0.16, αOH = −0.66, αH = −0.38, αO = 0.4}.


2021 ◽  
Author(s):  
Megan Karalus ◽  
Piyush Thakre ◽  
Graham Goldin ◽  
Dustin Brandt

Abstract A Honeywell liquid-fueled gas turbine test combustor, at idle conditions is numerically investigated in Simcenter STAR-CCM+ version 2020.3. This work presents Large Eddy Simulation (LES) results using both the Flamelet Generated Manifold (FGM) and detailed chemistry combustion models. Both take advantage of a hybrid chemical mechanism (HyChem) which has previously demonstrated very good accuracy for real fuels such as Jet-A with only 47 species. The objective of this work is to investigate the ability of FGM and detailed chemistry modeling to capture pollutant formation in an aero-engine combustor. Comparisons for NOx, CO, Unburned Hydrocarbons, and Soot are made, along with the radial temperature profile. To fully capture potential emissions, a soot moment model, and Zeldovich NOx model are employed along with radiation. A comparison of results with and without chemistry acceleration techniques for detailed chemistry is included. Then, computational costs are assessed by comparing the performance and scalability of the simulations with each of the combustion models. It is found that the detailed chemistry case with clustering can reproduce nearly identical results to detailed chemistry without any acceleration if CO is added as a clustering variable. With the Lagrangian model settings chosen for this study, the detailed chemistry results compared more favorably with the experimental data than FGM, however there is uncertainty in the secondary breakup parameters. Sensitivity of the results to a key parameter in the spray breakup model are provided for both FGM and Complex Chemistry (CC). By varying this breakup rate, the FGM case can predict CO, NOx, and Unburned Hydrocarbons equally well. The smoke number, however, is predicted most accurately by CC. The cost for running detailed chemistry with clustering is found to be about 4 times that of FGM for this combustor and chemical mechanism.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 126 ◽  
Author(s):  
Kai Zhang ◽  
Ali Ghobadian ◽  
Jamshid M. Nouri

The scale-resolving simulation of a practical gas turbine combustor is performed using a partially premixed finite-rate chemistry combustion model. The combustion model assumes finite-rate chemistry by limiting the chemical reaction rate with flame speed. A comparison of the numerical results with the experimental temperature and species mole fraction clearly showed the superiority of the shear stress transport, K-omega, scale adaptive turbulence model (SSTKWSAS). The model outperforms large eddy simulation (LES) in the primary region of the combustor, probably for two reasons. First, the lower amount of mesh employed in the simulation for the industrial-size combustor does not fit the LES’s explicit mesh size dependency requirement, while it is sufficient for the SSTKWSAS simulation. Second, coupling the finite-rate chemistry method with the SSTKWSAS model provides a more reasonable rate of chemical reaction than that predicted by the fast chemistry method used in LES simulation. Other than comparing with the LES data available in the literature, the SSTKWSAS-predicted result is also compared comprehensively with that obtained from the model based on the unsteady Reynolds-averaged Navier–Stokes (URANS) simulation approach. The superiority of the SSTKWSAS model in resolving large eddies is highlighted. Overall, the present study emphasizes the effectiveness and efficiency of coupling a partially premixed combustion model with a scale-resolving simulation method in predicting a swirl-stabilized, multi-jets turbulent flame in a practical, complex gas turbine combustor configuration.


Author(s):  
Lei-Yong Jiang ◽  
Ian Campbell

The flow-field of a generic gas combustor with interior and exterior conjugate heat transfers was numerically studied. Results obtained from three combustion models, combined with the re-normalization group (RNG) k-ε turbulence model, discrete ordinates radiation model, and partial equilibrium NOx model are presented and discussed. The numerical results are compared with a comprehensive database obtained from a series of experimental tests. The flow patterns and the recirculation zone length are excellently predicted, and the mean axial velocities are in fairly good agreement with the experimental measurements, particularly at downstream sections for all three combustion models. The mean temperature profiles are also fairly well captured by the probability density function (PDF) and eddy dissipation (EDS) combustion models. The EDS-finite-rate combustion model fails to provide acceptable temperature field. In general, the PDF shows some superiority over the EDS and EDS-finite-rate models. NOx levels predicted by the EDS model are in reasonable agreement with the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document