Forced Convection in a Square Cavity With Inlet and Outlet Ports

Author(s):  
S. M. Saeidi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar forced convection inside a square cavity with inlet and outlet ports is presented. Given a fixed position of the inlet port, the location of outlet port is varied along the four walls of the cavity. The widths of the ports are equal to 5, 15 and 25 percent of the side. By positioning the outlet ports at 9 locations on the walls for Re = 10, 40, 100 and 500 and Pr = 5, a total of 101 cases were studied. For high Re and with the shortest distance between the inlet and outlet ports along the top wall, a primary CW rotating vortex that covers about 70 to 80 percent of the cavity is observed. Similar cases with smaller Re exhibit identical flow patterns but with weaker vortices as Re is lowered. As the outlet ports is lowered along the right wall, the CW primary vortex diminishes its strength; however a CCW vortex that is present next to the top right corner covers a greater portion of the cavity. With the outlet port moving left along the bottom wall, the CW primary vortex is weakened further and the CCW vortex occupies nearly the right half of the cavity. The temperature fields are directly related to the presence of the multiple vortices in the cavity. Regions of high temperature gradient are consistently observed at the interface of the throughflow and next to the solid walls on both sides of the outlet port. Local Nusselt numbers are low at 3 corners when no outlet port is present in their vicinity, whereas intense heat transfer rate is observed on the two sides of the outlet port. Between these minima and maxima, the local Nusselt number can vary drastically depending on the flow and temperature fields. By placing the outlet port with one end at the 3 corners, maximum total Nusselt number of the cavity can be achieved. Minimum total heat transfer of the cavity is achieved with the outlet port located at the middle of the walls.

Author(s):  
A. I. Botello-Arredondo ◽  
A. Hernandez-Guerrero ◽  
C. Rubio-Arana ◽  
M. Picon-Nun˜ez

In an earlier study, Saeidi and Khodadadi presented results on forced convection inside a square cavity with one inlet and one outlet ports. Their most effective design showed maximum heat transfer and minimum pressure drop for a particular location of the ports. In the present study a cavity with one inlet and two outlet ports is considered, and different conditions and geometric arrays for the position of the ports are analyzed. The cold incoming fluid is heated by the isothermal hot walls. The outlet ports are positioned at forty-five different locations on the walls. A Reynolds number range of 10 < Re < 500 is considered, clearly within the laminar regimen. The flow and temperature fields are obtained as part of the solution. As expected, an increment of vorticity brought a heat transfer enhancement. The effect of the outlet ports and their location is discussed.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Abdullatif Ben-Nakhi ◽  
M. M. Eftekhari ◽  
D. I. Loveday

A computational study of steady, laminar, natural convective fluid flow in a partially open square enclosure with a highly conductive thin fin of arbitrary length attached to the hot wall at various levels is considered. The horizontal walls and the partially open vertical wall are adiabatic while the vertical wall facing the partial opening is isothermally hot. The current work investigates the flow modification due to the (a) attachment of a highly conductive thin fin of length equal to 20%, 35%, or 50% of the enclosure width, attached to the hot wall at different heights, and (b) variation of the size and height of the aperture located on the vertical wall facing the hot wall. Furthermore, the study examines the impact of Rayleigh number (104⩽Ra⩽107) and inclination of the enclosure. The problem is put into dimensionless formulation and solved numerically by means of the finite-volume method. The results show that the presence of the fin has counteracting effects on flow and temperature fields. These effects are dependent, in a complex way, on the fin level and length, aperture altitude and size, cavity inclination angle, and Rayleigh number. In general, Nusselt number is directly related to aperture altitude and size. However, after reaching a peak Nusselt number, Nusselt number may decrease slightly if the aperture’s size increases further. The impact of aperture altitude diminishes for large aperture sizes because the geometrical differences decrease. Furthermore, a longer fin causes higher rate of heat transfer to the fluid, although the equivalent finless cavity may have higher heat transfer rate. In general, the volumetric flow rate and the rate of heat loss from the hot surfaces are interrelated and are increasing functions of Rayleigh number. The relationship between Nusselt number and the inclination angle is nonlinear.


Author(s):  
A. I. Botello-Arredondo ◽  
A. Hernandez-Guerrero ◽  
C. Rubio-Arana ◽  
M. Pen˜a-Taveras

This paper presents a numerical investigation on forced convection in a cavity with one inlet and two outlet ports. For the present study three different aspect ratios between height (H) and length (L), (H ≠ L)were considered (AR = H/L), AR = 1, 1.3 and 2.5. Different conditions and geometric arrays for the position of the ports are analyzed. The walls of the cavity are considered to be isothermal warming-up the incoming cold fluid. A Reynolds number range of 10 < Re < 500 is considered, clearly within the laminar regimen. The flow and temperature fields are obtained as part of the solution. As expected, the aspect ratio affects the flow behavior in the cavity. An increment of vorticity leads to a heat transfer enhancement. The different aspect ratios of the cavity and the effect of the outlet ports and their location are discussed.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

The paper deals with the visualization of temperature fields in the vicinity of profiled heat transfer surfaces and a subsequent analysis of local values of Nusselt numbers by forced air convection in an experimental channel. Holographic interferometry was used for visualizing the temperature fields. Experiments were carried out at Re 462 up to 2338 at the distances between heat transfer surfaces of 0.025 m and 0.035 m. Temperature contours were determined from the obtained images of holographic interferograms of temperature fields and the local values of Nusselt numbers along the profiled surface for x/s = 0 up to x/s = 1.25 were calculated from them. A significant effect of the profiled surface on the local values of Nusselt numbers can be observed from the obtained results.


2015 ◽  
Vol 764 ◽  
pp. 362-394 ◽  
Author(s):  
T. Dairay ◽  
V. Fortuné ◽  
E. Lamballais ◽  
L.-E. Brizzi

AbstractDirect numerical simulation (DNS) of an impinging jet flow with a nozzle-to-plate distance of two jet diameters and a Reynolds number of 10 000 is carried out at high spatial resolution using high-order numerical methods. The flow configuration is designed to enable the development of a fully turbulent regime with the appearance of a well-marked secondary maximum in the radial distribution of the mean heat transfer. The velocity and temperature statistics are validated with documented experiments. The DNS database is then analysed focusing on the role of unsteady processes to explain the spatial distribution of the heat transfer coefficient at the wall. A phenomenological scenario is proposed on the basis of instantaneous flow visualisations in order to explain the non-monotonic radial evolution of the Nusselt number in the stagnation region. This scenario is then assessed by analysing the wall temperature and the wall shear stress distributions and also through the use of conditional averaging of velocity and temperature fields. On one hand, the heat transfer is primarily driven by the large-scale toroidal primary and secondary vortices emitted periodically. On the other hand, these vortices are subjected to azimuthal distortions associated with the production of radially elongated structures at small scale. These distortions are responsible for the appearance of very high heat transfer zones organised as cold fluid spots on the heated wall. These cold spots are shaped by the radial structures through a filament propagation of the heat transfer. The analysis of probability density functions shows that these strong events are highly intermittent in time and space while contributing essentially to the secondary peak observed in the radial evolution of the Nusselt number.


2003 ◽  
Vol 125 (4) ◽  
pp. 624-634 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar natural convection (using Boussinesq approximation) within a differentially heated square cavity due to the presence of a single thin fin is presented. Attachment of highly conductive thin fins with lengths equal to 20, 35 and 50 percent of the side, positioned at 7 locations on the hot left wall were examined for Ra=104,105,106, and 107 and Pr=0.707 (total of 84 cases). Placing a fin on the hot left wall generally alters the clockwise rotating vortex that is established due to buoyancy-induced convection. Two competing mechanisms that are responsible for flow and thermal modifications are identified. One is due to the blockage effect of the fin, whereas the other is due to extra heating of the fluid that is accommodated by the fin. The degree of flow modification due to blockage is enhanced by increasing the length of the fin. Under certain conditions, smaller vortices are formed between the fin and the top insulated wall. Viewing the minimum value of the stream function field as a measure of the strength of flow modification, it is shown that for high Rayleigh numbers the flow field is enhanced regardless of the fin’s length and position. This suggests that the extra heating mechanism outweighs the blockage effect for high Rayleigh numbers. By introducing a fin, the heat transfer capacity on the anchoring wall is always degraded, however heat transfer on the cold wall without the fin can be promoted for high Rayleigh numbers and with the fins placed closer to the insulated walls. A correlation among the mean Nu, Ra, fin’s length and its position is proposed.


2003 ◽  
Vol 125 (3) ◽  
pp. 575-584 ◽  
Author(s):  
P. M. Ligrani ◽  
G. I. Mahmood

Spatially resolved Nusselt numbers, spatially averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with perpendicular orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 10,000 to 83,700. The ratio of rib height to hydraulic diameter is .078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25% of the channel cross-sectional area. Nusselt numbers are given both with and without three-dimensional conduction considered within the acrylic test surface. In both cases, spatially resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer reattachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) vary locally on the rib tops as Reynolds number increases. Nusselt number ratios decrease on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. When adjusted to account for conduction along and within the test surface, Nusselt number ratios show different quantitative variations (with location along the test surface), compared to variations when no conduction is included. Changes include: (i) decreased local Nusselt number ratios along the central part of each rib top surface as heat transfer from the sides of each rib becomes larger, and (ii) Nusselt number ratio decreases near corners, where each rib joins the flat part of the test surface, especially on the downstream side of each rib. With no conduction along and within the test surface (and variable heat flux assumed into the air stream), globally-averaged Nusselt number ratios vary from 2.92 to 1.64 as Reynolds number increases from 10,000 to 83,700. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range, with values in approximate agreement with data measured by other investigators in a square channel also with 45 deg oriented ribs.


2019 ◽  
Vol 9 (2) ◽  
pp. 211 ◽  
Author(s):  
Filiz Ozgen ◽  
Yasin Varol

The heat transfer of mixed convection in a horizontal channel filled with a porous medium has been studied in this article, given that it plays an extensive role in various technical applications, such as flow of fluid in geothermal resources, formations in chemical industries, the storage of radioactive nuclear waste material, and cooling. Those equations written in a dimensionless form have been solved using the finite difference method for different values of the parameters. The results obtained from the study have been presented through streamlines, isotherms, and both local and average Nusselt numbers. It has been observed that parameters such as the Rayleigh and Peclet numbers have an effect on flow and temperature fields.


2019 ◽  
Vol 29 (11) ◽  
pp. 4130-4141 ◽  
Author(s):  
Abdulmajeed Mohamad ◽  
Mikhail A. Sheremet ◽  
Jan Taler ◽  
Paweł Ocłoń

Purpose Natural convection in differentially heated enclosures has been extensively investigated due to its importance in many industrial applications and has been used as a benchmark solution for testing numerical schemes. However, most of the published works considered uniform heating and cooling of the vertical boundaries. This paper aims to examine non-uniform heating and cooling of the mentioned boundaries. The mentioned case is very common in many electronic cooling devices, thermal storage systems, energy managements in buildings, material processing, etc. Design/methodology/approach Four cases are considered, the left-hand wall’s temperature linearly decreases along the wall, while the right-hand wall’s temperature is kept at a constant, cold temperature. In the second case, the left-hand wall’s temperature linearly increases along the wall, while the right-hand wall’s temperature is kept a constant, cold temperature. The third case, the left-hand wall’s temperature linearly decreases along the wall, while the right-hand wall’s temperature linearly increases along the wall. In the fourth case, the left-hand and the right-hand walls’ temperatures decrease along the wall, symmetry condition. Hence, four scenarios of natural convection in enclosures were covered. Findings It has been found that the average Nusselt number of the mentioned cases is less than the average Nusselt number of the uniformly heated and cooled enclosure, which reflects the physics of the problem. The work quantifies the deficiency in the rate of the heat transfer. Interestingly one of the mentioned cases showed two counter-rotating horizontal circulations. Such a flow structure can be considered for passively, highly controlled mechanism for species mixing processes application. Originality/value Previous works assumed that the vertical boundary is subjected to a constant temperature or to a sinusoidal varying temperature. The subject of the work is to examine the effect of non-uniformly heating and/or cooling vertical boundaries on the rate of heat transfer and flow structure for natural convection in a square enclosure. The temperature either linearly increases or decreases along the vertical coordinate at the boundary. Four scenarios are explored.


Author(s):  
Minter Cheng

Incompressible flows passing through two circular cylinders in side-by-side arrangement are investigated numerically. The calculations are carried out with pitch ratios from 1.1 to 2.0 at Reynolds number of 1000. The flow and temperature fields, flow interference, and the local and the mean Nusselt numbers are studied in this research. It is observed that for the pitch ratios in the range of 2.0 and 1.5, the emerging jet between cylinders deflects and one wide and one narrow wakes behind the cylinders are formed. The gap flow velocity increases as the pitch ratio decreases and consequently increases the mean Nusselt number of the cylinders. As the pitch ratio decreases and is less than 1.5, the jet deflection is more severe and the gap flow velocity starts to decrease slowly, which results in reducing the mean Nusselt number of the cylinders. Due to the rapid reduction of the narrow wake size, the mean Nusselt number of the cylinder with narrow wake shows an uprising tendency for the decreasing pitch ratio less than 1.2.


Sign in / Sign up

Export Citation Format

Share Document