Comparison Between EVM and RSM Turbulence Models in Predicting Flow and Heat Transfer in Rib-Roughened Channels
A 3-D analysis of two-equation eddy-viscosity (EVMs) and Reynolds stress (RSM) turbulence models and their application to solving flow and heat transfer in rotating rib-roughened internal cooling channels is the main focus of this study. The flow in theses channels is affected by ribs, rotation, buoyancy, bends and boundary conditions. The EVMs considered are: The standard k–ε Model: of Launder and Spalding Launder and Spalding [1], the Renormalization Group k-ε model: Yakhot and Orszag [2], the Realizable k-ε model Shur et al. [3], the standard k-ω Model, Wilcox Wilcox [4], and the Shear-Stress Transport (SST) k-ω Model, Menter [5]. The viscosity affected near wall region is resolved by enhanced near wall treatment using combined two-layer model with enhanced wall functions. The results for both stationary and rotating channels showed the advantages of Reynolds Stress Model (RSM), Gibson and Launder [6], Launder [7], Launder [8] in predicting the flow field and heat transfer compared to the isotropic EVMs that need corrections to account for streamline curvature, buoyancy and rotation.