Two Dimensional Modeling of Laser Cladding With Droplet Injection

Author(s):  
L. Han ◽  
J. Choi

Directed Metal/Material Deposition (DMD) process is one of additive manufacturing processes based on laser cladding process. A full understanding of laser cladding process is a must to make the DMD process consistent and robust. A two dimensional mathematical model of laser cladding was developed to understand the influence of fluid flow to the mixing, dilution, and deposition dimension, incorporating melting, solidification, and evaporation phenomena. The fluid flow in the melt pool driven by thermal capillary convection and energy balance at liquid-vapor and solid-liquid interface was investigated and the impact of the droplets on the melt pool shape and ripple was studied. Dynamic motion, development of melt pool and the formation of cladding layer were simulated.

2005 ◽  
Vol 127 (9) ◽  
pp. 978-986 ◽  
Author(s):  
J. Choi ◽  
L. Han ◽  
Y. Hua

Laser aided Directed Material Deposition (DMD) is an additive manufacturing process based on laser cladding. A full understanding of laser cladding is essential in order to achieve a steady state and robust DMD process. A two dimensional mathematical model of laser cladding with droplet injection was developed to understand the influence of fluid flow on the mixing, dilution depth, and deposition dimension, while incorporating melting, solidification, and evaporation phenomena. The fluid flow in the melt pool that is driven by thermal capillary convection and an energy balance at the liquid–vapor and the solid–liquid interface was investigated and the impact of the droplets on the melt pool shape and ripple was also studied. Dynamic motion, development of melt pool and the formation of cladding layer were simulated. The simulated results for average surface roughness were compared with the experimental data and showed a comparable trend.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashok Keerthi ◽  
Solleti Goutham ◽  
Yi You ◽  
Pawin Iamprasertkun ◽  
Robert A. W. Dryfe ◽  
...  

AbstractMembrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls’ material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics’ toolkit for designing smart membranes and mimicking manifold machinery of biological channels.


2014 ◽  
Vol 385 ◽  
pp. 106-110
Author(s):  
Zhijun Wang ◽  
Jincheng Wang ◽  
Lilin Wang ◽  
Junjie Li ◽  
Yaohe Zhou

2021 ◽  
Author(s):  
Dasith Liyanage ◽  
Suk-Chun Moon ◽  
Ajith S. Jayasekare ◽  
Abheek Basu ◽  
Madeleine Du Toit ◽  
...  

Abstract High-temperature laser-scanning confocal microscopy (HT-LSCM) has proven to be an excellent experimental technique through in-situ observations of high temperature phase transformation to study kinetics and morphology using thin disk steel specimens. A 1.0 kW halogen lamp, within the elliptical cavity of the HT-LSCM furnace radiates heat and imposes a non-linear temperature profile across the radius of the steel sample. This local temperature profile when exposed at the solid/liquid interface determines the kinetics of solidification and phase transformation morphology. A two-dimensional numerical heat transfer model for both isothermal and transient conditions is developed for a concentrically solidifying sample. The model can accommodate solid/liquid interface velocity as an input parameter under concentric solidification with cooling rates up to 100 K/min. The model is validated against a commercial finite element analysis software package, Strand7, and optimized with experimental data obtained under near-to equilibrium conditions. The validated model can then be used to define the temperature landscape under transient heat transfer conditions.


2012 ◽  
Vol 713 ◽  
pp. 85-90
Author(s):  
I. Tabernero ◽  
Aitzol Lamikiz ◽  
Eneko Ukar ◽  
S. Martínez

The laser cladding process is based on the generation of a melt-pool in a substrate where a filler material is injected, generating a high quality clad with a minimum heat affected zone. This process is industrially used to generate coatings over wear or damaged surfaces, being an alternative to traditional deposition techniques. One of the most important aspects for its industrial application is to know the clad geometry in order to calculate the deposited layer thickness. This work presents a model in which, starting from the concentration of injected material and the melt-pool geometry, clad height is finally estimated. Both input variables are obtained by two previous validated models. On one hand, the melt pool is estimated by a thermal model based on the finite difference method, and on the other hand, concentration of injected material is provided by a particle concentration CFD model. This data is used in a mass balance over melt-pool area in order to estimate the deposited clad height.


2016 ◽  
Vol 52 (39) ◽  
pp. 6609-6612 ◽  
Author(s):  
Yanxia Yu ◽  
Jianbin Lin ◽  
Yan Wang ◽  
Qingdao Zeng ◽  
Shengbin Lei

With delicate control of the monomer concentration, imine surface COFs can be synthesized at the solid/liquid interface at room temperature.


2007 ◽  
Vol 40 (13) ◽  
pp. 4552-4560 ◽  
Author(s):  
Sheng-Bin Lei ◽  
Ke Deng ◽  
Yan-Lian Yang ◽  
Qing-Dao Zeng ◽  
Chen Wang ◽  
...  

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Hassan M. S. Al-Sarrach ◽  
Ghalib Y. Kahwaji ◽  
Mohamed A. Samaha

The freezing of water around immersed unfinned and finned horizontal tubes is simulated numerically. The impact of natural convection as well as the water density inversion with temperature is considered. The equations governing both fluid flow and heat transfer around the tubes and through the solid–liquid interface are solved using finite difference schemes. To follow the moving solid–liquid boundary, dynamic grid generation is performed using the elliptic partial differential equation method with iterative interpolating smoothing to avoid divergence. For validation, the present results for unfinned tubes are compared with experimental studies reported in the literature. The present numerical simulations are aimed at improving our understanding of the parameters affecting the freezing process around both finned and unfinned tubes. The results showed that the flow patterns are similar in both tube configurations with one main vortex in the liquid region when there is no inversion in the water density. The presence of fins complicates the distribution of local Nusselt number along the solid–liquid interface in comparison with the unfinned tube. The impact of natural convection on the rate of ice formation is limited to the initial period of the freezing process. The results also show the freezing enhancement when utilizing fins. An accumulated ice mass correlation is developed for each tube configuration. This model can be used to optimize the design of both finned and unfinned tubes in energy storage systems, which are viable tools for air conditioning load shifting and leveling.


Sign in / Sign up

Export Citation Format

Share Document