interface concentration
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 32 (5) ◽  
pp. 1766-1773
Author(s):  
Kai Wang ◽  
Yongxiu Chen ◽  
Xiangyu Dou ◽  
Yongsheng Han

2019 ◽  
Vol 51 (1) ◽  
pp. 131-141 ◽  
Author(s):  
Abigail K. Ackerman ◽  
Alexander J. Knowles ◽  
Hazel M. Gardner ◽  
André A. N. Németh ◽  
Ioannis Bantounas ◽  
...  

Abstract The kinetics of primary α-Ti colony/Widmanstätten plate growth from the β are examined in Ti-6246, comparing a simple quasi-analytic model to experiment. The plate growth velocity depends sensitively both on the diffusivity D(T) of the rate-limiting species and on the supersaturation around the growing plate. These result in a maxima in growth velocity around 40 K below the transus, once sufficient supersaturation is available to drive the plate growth. In Ti-6246, the plate growth velocity was found to be around 0.32 μm min−1 at 850 °C, which was in good agreement with the model prediction of 0.36 μm min−1. The solute field around the growing plates, and the plate thickness, was found to be quite variable, due to the intergrowth of plates and soft impingement. This solute field was found to extend to up to 30 nm, and the interface concentration in the β was found to be around 6.4 at. pct Mo. It was found that the increasing O content from 500 to 1500 wppm will have minimal effect on the plate lengths expected during continuous cooling; in contrast, Mo approximately doubles the plate lengths obtained for every 2 wt pct Mo reduction. Alloys using V as the β stabilizer instead of Mo are expected to have much faster plate growth kinetics at nominally equivalent V contents. These findings will provide a useful tool for the integrated design of alloys and process routes to achieve tailored microstructures.


2017 ◽  
Vol 833 ◽  
pp. 54-69 ◽  
Author(s):  
Shantanu Maheshwari ◽  
Martin van der Hoef ◽  
Andrea Prosperetti ◽  
Detlef Lohse

The dissolution of a multicomponent nanodrop in a sparingly miscible liquid is studied by molecular dynamics (MD) simulations. We studied both binary and ternary systems, in which nanodroplets are formed from one and two components, respectively. Whereas for a single-component droplet the dissolution can easily be calculated, the situation is more complicated for a multicomponent drop, as the interface concentrations of the drop constituents depend on the drop composition, which changes with time. In this study, the variation of the interface concentration with the drop composition is determined from independent ‘numerical experiments’, which are then used in the theoretical model for the dissolution dynamics of a multicomponent drop. The MD simulations reveal that when the interaction strengths between the drop constituents and the surrounding bulk liquid are significantly different, the concentration of the more soluble component near the drop interface may become larger than in the drop bulk. This effect is the larger the smaller the drop radius. While the present study is limited to binary and ternary systems, the same method can be easily extended to a larger number of components.


2016 ◽  
Vol 800 ◽  
pp. 180-212 ◽  
Author(s):  
Pablo Peñas-López ◽  
Miguel A. Parrales ◽  
Javier Rodríguez-Rodríguez ◽  
Devaraj van der Meer

The term ‘history effect’ refers to the contribution of any past mass transfer events between a gas bubble and its liquid surroundings towards the current diffusion-driven growth or dissolution dynamics of that same bubble. The history effect arises from the (non-instantaneous) development of the dissolved gas concentration boundary layer in the liquid in response to changes in the concentration at the bubble interface caused, for instance, by variations of the ambient pressure in time. Essentially, the history effect amounts to the acknowledgement that at any given time the mass flux across the bubble is conditioned by the preceding time history of the concentration at the bubble boundary. Considering the canonical problem of an isolated spherical bubble at rest, we show that the contribution of the history effect in the current interfacial concentration gradient is fully contained within a memory integral of the interface concentration. Retaining this integral term, we formulate a governing differential equation for the bubble dynamics, analogous to the well-known Epstein–Plesset solution. Our equation does not make use of the quasi-static radius approximation. An analytical solution is presented for the case of multiple step-like jumps in pressure. The nature and relevance of the history effect is then assessed through illustrative examples. Finally, we investigate the role of the history effect in rectified diffusion for a bubble that pulsates under harmonic pressure forcing in the non-inertial, isothermal regime.


2016 ◽  
Vol 52 (39) ◽  
pp. 6609-6612 ◽  
Author(s):  
Yanxia Yu ◽  
Jianbin Lin ◽  
Yan Wang ◽  
Qingdao Zeng ◽  
Shengbin Lei

With delicate control of the monomer concentration, imine surface COFs can be synthesized at the solid/liquid interface at room temperature.


2016 ◽  
Vol 18 (44) ◽  
pp. 30830-30836 ◽  
Author(s):  
S. V. Pavlov ◽  
S. A. Kislenko

Carbon surface topography influences the solvent structure at the interface, concentration distribution of reactants (Li+, O2), and their absorption kinetics.


2013 ◽  
Vol 334-335 ◽  
pp. 167-170
Author(s):  
Hatem Mustafa

Absorption phenomenon of ammonia vapor into ammonia water solution has been investigated experimentally, by allowing superheated ammonia vapor to flow into a test cell containing a stagnant pool of ammonia water solution. Before commencing the experiment, the pressure in the test cell P1i, corresponds to the equilibrium vapor of the ammonia-water system at room temperature and initial mass fraction Ci. When the valve is opened, mechanical equilibrium is established quickly and the pressure in the test cell becomes equal to that of the ammonia vapor cylinder. The difference between the initial pressure in the vapor cylinder and the initial pressure in the test cell ΔPi is found to have a major influence on the absorption rate [1]. The interface temperature can be estimated for a transient case, by help of an inverse solution proposed by Monde [2]. The interface concentration Cint obtained by measured ammonia vapour pressure and the estimated interface temperature. The main objective of this study is to investigate the effect of the initial pressure difference and the initial concentration on the interface concentration. A correlation which gives the interface concentration as a function of the initial concentration, the initial pressure difference and time is derived. In addition, the absorbed mass at no pressure difference could be estimated from the absorbed mass at initial pressure difference.


2013 ◽  
Vol 17 (3) ◽  
pp. 651-664 ◽  
Author(s):  
Jordan Hristov

Diffusion problem with a specification of considering liquid redistribution from a thin interlayer between two semi-infinite media in contact is developed. The basic approach involves an integral approach defining finite depths of penetration of the diffusant into the media and fractional half-time derivative of the boundary (at the interface) concentration. The approach is straightforward and avoids cumbersome calculations based on the idea to develop entire domain (for each of the contacting bodies) solutions. The results are compared to classical solutions, when they exist.


2010 ◽  
Vol 297-301 ◽  
pp. 785-789
Author(s):  
Hatem Mustafa

Ammonia absorption process of ammonia vapor into ammonia water solution has been investigated experimentally, by inserting superheated ammonia vapor into a test cell containing a stagnant pool of ammonia water solution of several ammonia mass fractions, Ci. Before commencing the experiment, the pressure in the test cell corresponds to the equilibrium vapor of the ammonia-water system at room temperature. When the valve is opened, mechanical equilibrium is established quickly and the ammonia vapor diffuses into ammonia solution [1]. The difference between the initial pressure in the vapor cylinder and the initial pressure in the test cell ΔPi is found to have a major influence not only on the absorption rate but also on the estimated interface concentration. The interface concentration Cint of the cases ΔPi = 50 and 100 kPa exhibits a similar tendency, Cint decreases rapidly compared to other initial pressures ΔPi = 150 and 200 kPa. On the other hand, the interface concentration Cint of the cases ΔPi = 250 and 300 kPa are increasing within about 50 sec, then are hardly changing with time. They behave almost in a similar way as of Cint = 0.27 kg/kg. A correlation which gives the total absorbed mass of ammonia as a function of the initial concentration, the initial pressure difference and time is derived. In addition, the absorbed mass at no pressure difference could be estimated from the absorbed mass at initial pressure difference.


Sign in / Sign up

Export Citation Format

Share Document