Mixed Convection in Air in an Open Ended Cavity With a Moving Plate Parallel to the Cavity Open Surface

2005 ◽  
Author(s):  
Assunta Andreozzi ◽  
Nicola Bianco ◽  
Vincenzo Naso ◽  
Oronzio Manca

In this study, a numerical investigation of mixed convection in air in an open ended cavity, with a moving plate parallel to the cavity open surface, is carried out. The moving plate has a constant velocity, whereas a vertical plate of the open cavity is heated at uniform heat flux. All the other walls are adiabatic. The numerical analysis is obtained by means of the commercial code FLUENT. Two configurations, assisting and opposing, are analyzed. In the assisting configuration, natural convection is supported by the plate motion, whereas, in the opposing configuration, natural convection and plate motion have opposing effects. The effect of different geometrical parameters, heat flux and moving plate velocity are analyzed. Results in terms of heated plate and moving plate temperature profiles are presented and simple monomial correlation equations for both the configurations are proposed between the terms Nu/Re0.6 and Ri.

Author(s):  
Assunta Andreozzi ◽  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini

In this paper an experimental investigation on natural convection in air in inclined channels with rectangular transversal section and lower wall heated at uniform heat flux is carried out. Wall temperature measurements and flow visualization are presented. The results allow investigating on the effect of the distance between the two principal parallel walls and of the inclination angle. The experiments are accomplished for two channel gap values: 20 and 40 mm. The inclination angle is equal to 80° and 88°. The flow development and the shape of flow transitions along the channel are visualized. Flow visualization allows to describe the secondary motion inside an inclined channel. Flow separation region along the lower heated plate begins at lower axial coordinate as the wall heat flux, the inclination angle and the channel gap are greater. The flow separation depends also on transversal coordinate. The detected secondary structures pass from thermals to plumes and vortices. Along the plane parallel to the heated wall, the visualization shows that thermal plumes split in V-shaped structures. For the largest considered channel gap value the instability phenomena in the channel are stronger and chaotic motion in the channel outlet zone is observed. When the channel gap value increases wall temperatures become lower because the higher distance between the walls determines a greater mass flow rate and an increase in the heat transfer.


2005 ◽  
Vol 127 (8) ◽  
pp. 888-896 ◽  
Author(s):  
Oronzio Manca ◽  
Marilena Musto ◽  
Vincenzo Naso

An experimental investigation on air natural convection, in a vertical channel asymmetrically heated at uniform heat flux, with downstream unheated parallel extensions, is carried out. One extension is coplanar to the unheated channel wall and the distance between the extensions is equal to or greater than the channel gap (geometrically asymmetric chimney). Experiments are performed with different values of the wall heat flux, aspect ratio (Lh∕b), extension ratio (L∕Lh) and expansion ratio (B∕b). For the largest value of the aspect ratio (Lh∕b=10), the adiabatic extensions improve the thermal performance in terms of lower maximum wall temperature of the channel. Optimal configurations of the system with asymmetrical chimney are detected. Flow visualization shows a cold inflow in the channel-chimney system that penetrates down below the channel exit section. Maximum wall temperatures and channel Nusselt numbers are correlated to the channel Rayleigh number, Ra*, and to the geometrical parameters, in the ranges 3.0×102⩽Ra*B∕b⩽1.0105, 1.0⩽B∕b⩽3.0 and 1.0⩽L∕Lh⩽4.0 with Lh∕b=5.0 and 10.0.


Volume 1 ◽  
2004 ◽  
Author(s):  
Nicola Bianco ◽  
Luigi Langellotto ◽  
Oronzio Manca ◽  
Sergio Nardini

In this paper, design charts for the evaluation of thermal parameters for natural convection in air in a vertical convergent channel are proposed. In the thermal analysis of natural convection in a convergent channel, the parameters that play an important role are: the heat flux, maximum wall temperatures and geometrical parameters such as the length of the heated walls, the minimum and maximum channel sections. A simple numerical procedure to obtain the thermal design charts is presented. Results are carried out for symmetrically heated channels with walls at uniform heat flux. Some simple examples are given to show the use of the charts. The proposed charts are obtained from data resulting from numerical investigation in the following parameter ranges: angles of convergence not greater than 10 deg, surface emissivity between 0.10 and 0.90, 30 ≤ (qc + qr)≤ 220 W/m2, 2.0 ≤ L/bmax ≤ 60 and 0.030 ≤ bmin/bmax ≤ 1.0.


Author(s):  
Assunta Andreozzi ◽  
Nicola Bianco ◽  
Vincenzo Naso ◽  
Oronzio Manca

In this study a numerical investigation of mixed convection in air due to the interaction between a buoyancy flow and a moving plate induced flow in a vertical channel is carried out. The moving plate has a constant velocity and moves in the opposite direction with respect to the buoyancy force. The channel principal walls are heated at uniform heat flux. The numerical analysis is obtained by means of the commercial code Fluent. The effects of the channel spacing, heat transfer and moving plate velocity are investigated and results in terms of the channel wall and moving plate temperatures and Nusselt numbers are given. The wall temperature profiles allow to observe different behaviors of the flow motion inside the channel, a buoyancy flow, a forced flow and a transition flow related to the velocity of moving plate. The transition velocity increases as the heat flux and the channel gap increase. Dimensionless heat transfer results, Nu/Re0.68 as a function of Richardson number, Ri, present a good agreement with two correlations obtained for the buoyancy dominant flow, at Ri > 10, and forced dominant flow, at Ri < 10−3.


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Alessandra Diana

Natural convection in horizontal rectangular channel without or with aluminum foam is experimentally and numerically investigated. In the case with aluminum foam the channel is partially filled. In both cases, the bottom wall of the channel is heated at a uniform heat flux and the upper wall is unheated and it is not thermally insulated to the external ambient. The experiments are performed with working fluid air. Different values of wall heat flux at lower surface are considered in order to obtain some Grashof numbers and different heated wall temperature distributions. Two different aluminum foams are considered in the experimental investigation, one from “M-pore”, with 10 and 30 pore per inch (PPI), and the other one from “ERG”, with 10, 20 and 40 PPI. The numerical simulation is carried out by a simplified two-dimensional model. It is found that the heat transfer is better when the channel is partially filled and the emissivity is low, whereas the heated wall temperature values are higher when the channel is partially filled and the heated bottom plate has high emissivity. The investigation is achieved also by flow visualization which is carried out to identify the main flow shape and development and the transition region along the channel. The visualization of results, both experimental and numerical, grants the description of secondary motions in the channel.


Sign in / Sign up

Export Citation Format

Share Document