Control of Flow Pattern and Solidification Interface Shape in an Induction Heated Czochralski Crystal Growth System

Author(s):  
Haisheng Fang ◽  
Lili Zheng ◽  
Hui Zhang

Optical crystals grown by Czochralski technique from a solute-rich melt usually suffer defects of melt inclusion or bubble core defects, which severely affect the optical, thermal and mechanical properties of the material. It is well known that the formation of melt inclusion or bubble core is highly related to species distribution in the growth system especially at the solidification interface and the shape of the growth interface. This paper has examined the flow pattern and solidification interface changes by changing the forced convection, e.g., crystal rotation and by changing the natural convection, e.g., inserting a horizontal disk plate. The relative effect of fluid-flow convection modes in the melt associated with crystal rotation rate is represented by a dimensionless parameter, Gr/Re2. Increasing the rotation rate will cause the solid-liquid interface change from the convex shape to concave. When the crystal rotation rate is relatively low and natural convection is strong, Gr/Re2 is large. In this case, the concentration of species pertinent to melt inclusion moves down along the axis of rotation. When the crystal rotation rate is increased, the value of Gr/Re2 decreases. The precipitated composition spreads over the growing interface may then be swiped away from the growth interface by increased crystal rotation. Melt inclusion-free crystals can thus be obtained. The relationship between Gr/Re2 and growth interface shape change is achieved by numerical simulations. The stagnant point location as a function of crystal rotation is also presented, which shows that the stagnant point moves outward by increasing Reynolds number and/or reducing Grashof number. From such understanding, the interface shape and melt inclusion position can then be controlled through control of Gr/Re2 in the growth system. Many times, it is, however, not practical in the experiments to use a high rotation rate for optical crystal growth since high rotation rate will introduce the striation defects. A new design to reduce natural convection is then proposed to improve the effect of crystal rotation and to control the solidification interface shape. Numerical simulations have been performed to demonstrate the possibility of the new design. Results show that such design is very effective and practical to control the melt inclusion and the solidification interface shape.

Author(s):  
Haisheng Fang ◽  
Lili Zheng ◽  
Hui Zhang ◽  
Yong Hong ◽  
Qun Deng

Optical and laser crystals grown by Czochralski technique from a solute-rich melt usually suffer defects of melt inclusion or bubble core, which severely affects optical, thermal and mechanical properties of the material. The main purpose of this paper is to study the inclusion mechanisms and to minimize such defects. Two types of mechanisms possibly responsible for inclusion defects are presented. In the current investigation, Czochralski grown optical single crystals are examined to recognize the effects of crystal rotation and natural convection on the melt flow pattern and solidification interface shape. It is established that increasing the rotation rate of crystal or reducing natural convection in the melt will cause the solid-liquid interface change from the convex shape to concave and high concentration of the species may be pushed away from the solidification interface. Simulations were performed to establish the relationships between Gr/Re2 and growth interface shape change, and between Gr/Re2 and stagnant point location were established. A disk submerged into the melt was used to reduce natural convection by reducing the melt height. The idea was similar to the submerged baffle or submerged heater used in Bridgeman crystal growth. The effect of submerged baffle on enhancement of crystal rotation effect was demonstrated. Simulation results showed that the melt flow near the solidification interface depended strongly on the baffle location, which was not surprised. The idea of submerged heater was also examined in Czochralski growth. Different from a constant temperature close to the melting temperature used in Bridgman growth, the submerged heater temperature should be selected on a higher temperature between the melting temperature and crucible temperature. The value depended strongly on the ratio between crystal and crucible diameters. It was proved that a constant temperature was not the best choice in Czochralski growth. In fact, an optimized temperature profile could be found in numerical simulations for melt flow control and inclusion suppression.


1995 ◽  
Vol 10 (7) ◽  
pp. 1593-1600 ◽  
Author(s):  
Y. Namikawa ◽  
M. Egami ◽  
Y. Yamada ◽  
Y. Shiohara

YBa2Cu3C7−x (Y123) single crystals have been grown by the modified pulling method (Solute Rich Liquid Crystal Pulling method, SRL-CP). For further superconductor device application, it is important to establish a technique that enables us to produce larger Y123 single crystals consistently. We have investigated the relationship among the crystal size, the crystal rotation rate, the flow pattern in the melt, and the temperature at the crystal growth interface experimentally. Increase of the crystal diameter and/or the crystal rotation rate increased the strength of the forced convection in the melt, and as a result, the temperature at the crystal growth interface increased. This resulted in a reduction of the crystal growth rate. On the other hand, the forced convection should be kept high enough to prevent floating particles attaching to the growing crystal. Therefore, in order to grow a larger single crystal, it was necessary to control the crystal rotation rate according to the change of the crystal diameter with time. We succeeded in crystal pulling along the c-axis of a relatively large Y123 single crystal which was 17 mm × 17 mm and 8 mm in length.


1997 ◽  
Vol 173 (3-4) ◽  
pp. 492-502 ◽  
Author(s):  
G.H. Yeoh ◽  
G. de Vahl Davis ◽  
E. Leonardi ◽  
H.C. de Groh ◽  
M. Yao

1996 ◽  
Vol 11 (2) ◽  
pp. 288-295 ◽  
Author(s):  
Y. Namikawa ◽  
M. Egami ◽  
Y. Shiohara

A series of numerical calculations of convection were performed for the YBa2Cu3O7−x (Y123) single crystal growth by the modified pulling method (Solute Rich Liquid Crystal Pulling method; SRL-CP method). The finite-difference method was used to calculate the steady state of the axisymmetric two-dimensional incompressible viscous fluid system. The effect of the crystal rotation on the flow pattern and the temperature distribution in the melt was studied. An increase of the crystal diameter and/or the crystal rotation rate increased the strength of the forced convection in the melt, and as a result, the temperature at the crystal growth interface increased. These results were consistent with the experimental results.


2013 ◽  
Vol 740-742 ◽  
pp. 27-30 ◽  
Author(s):  
Georg Neubauer ◽  
Michael Salamon ◽  
Florian Roider ◽  
Norman Uhlmann ◽  
Peter J. Wellmann

In this paper, we present for the first time an in-situ 3-D reconstruction of the SiC crystal growth interface using X-ray computed tomography (CT). We show that the shape of the growth interface can be determined with high precision at growth temperatures above 2100 °C in a conventional 3” PVT (physical vapor transport) growth system.


2004 ◽  
Vol 266 (1-3) ◽  
pp. 34-39 ◽  
Author(s):  
Th. Wetzel ◽  
J. Virbulis ◽  
A. Muiznieks ◽  
W. von Ammon ◽  
E. Tomzig ◽  
...  

2002 ◽  
Vol 12 (12) ◽  
pp. 187-221 ◽  
Author(s):  
Koichi Kakimoto ◽  
Nobuyuki Imaishi

Sign in / Sign up

Export Citation Format

Share Document