Effect of Brownian and Thermophoretic Diffusions of Nanoparticles on Nonequilibrium Heat Conduction in Nanofluids

2008 ◽  
Author(s):  
Yuwen Zhang ◽  
Ling Li ◽  
H. B. Ma

Effects of Brownian and thermophoretic diffusions on nonequilibrium heat conduction in a nanofluid layer with periodic heat flux on one side and specified temperature on the other side are investigated numerically. The problem are described by eight dimensionless parameters: density ratio, heat capacity ratio, Lewis number, Soret coefficient, initial volume fraction of nanoparticles, initial temperature, Sparrow number, and period of the surface heat flux. Effects of Brownian and thermophoretic diffusions of nanoparticles on nonequilibrium heat conduction in nanofluid obtained by dispersing copper nanoparticles into ethylene glycol are investigated. The results showed that the Brownian and thermophoretic diffusions only affect the nanoparticle temperature but their effect on the heat transfer enhancement is negligible.

1964 ◽  
Vol 31 (3) ◽  
pp. 369-375 ◽  
Author(s):  
E. M. Sparrow ◽  
A. Haji-Sheikh ◽  
T. S. Lundgren

A general theory is devised for determining the temperature and heat flux at the surface of a solid when the temperature at an interior location is a prescribed function of time. The theory is able to accommodate an initial temperature distribution which varies arbitrarily with position throughout the solid. Detailed analytical treatment is extended to the sphere, the plane slab, and the long cylinder; and it is additionally shown that the semi-infinite solid is a particular case of the general formulation. The accuracy of the method is demonstrated by a numerical example. In addition, a numerical calculation procedure is devised which appears to provide smooth, nonoscillatory results.


2014 ◽  
Vol 578-579 ◽  
pp. 902-906
Author(s):  
Qiang Nian Li

Thermal behaviors of a thin plate under a periodic surface thermal disturbance are investigated. The temperature and the displacement responses are predicted using the parabolic heat conduction model. The solution of temperature response is obtained by separation of variables. Firstly, an analytic expression of heat flux filed within the plate is obtained by using the parabolic heat conduction equation which is described by heat flux vector, then, based on the conservation equation of energy, the temperature response is given. The displacement response of the plate is solved analytically using the Nowachi’s and the Navier’s approachs. The thermal behaviors of a plate with various relatively parameters is calculated numerically and the results shown graphically.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Bagh Ali ◽  
Rizwan Ali Naqvi ◽  
Amna Mariam ◽  
Liaqat Ali ◽  
Omar M. Aldossary

The below work comprises the unsteady flow and enhanced thermal transportation for Carreau nanofluids across a stretching wedge. In addition, heat source, magnetic field, thermal radiation, activation energy, and convective boundary conditions are considered. Suitable similarity functions use to transmuted partial differential formulation into the ordinary differential form, which is solved numerically by the finite element method and coded in Matlab script. Parametric computations are made for faster stretch and slowly stretch to the surface of the wedge. The progressing value of parameter A (unsteadiness), material law index ϵ, and wedge angle reduce the flow velocity. The temperature in the boundary layer region rises directly with exceeding values of thermophoresis parameter Nt, Hartman number, Brownian motion parameter Nb, ϵ, Biot number Bi and radiation parameter Rd. The volume fraction of nanoparticles rises with activation energy parameter EE, but it receded against chemical reaction parameter Ω, and Lewis number Le. The reliability and validity of the current numerical solution are ascertained by establishing convergence criteria and agreement with existing specific solutions.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


2008 ◽  
Vol 20 (11) ◽  
pp. 111701 ◽  
Author(s):  
M. Pailha ◽  
M. Nicolas ◽  
O. Pouliquen

Sign in / Sign up

Export Citation Format

Share Document