scholarly journals Finite Element Study for Magnetohydrodynamic (MHD) Tangent Hyperbolic Nanofluid Flow over a Faster/Slower Stretching Wedge with Activation Energy

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Bagh Ali ◽  
Rizwan Ali Naqvi ◽  
Amna Mariam ◽  
Liaqat Ali ◽  
Omar M. Aldossary

The below work comprises the unsteady flow and enhanced thermal transportation for Carreau nanofluids across a stretching wedge. In addition, heat source, magnetic field, thermal radiation, activation energy, and convective boundary conditions are considered. Suitable similarity functions use to transmuted partial differential formulation into the ordinary differential form, which is solved numerically by the finite element method and coded in Matlab script. Parametric computations are made for faster stretch and slowly stretch to the surface of the wedge. The progressing value of parameter A (unsteadiness), material law index ϵ, and wedge angle reduce the flow velocity. The temperature in the boundary layer region rises directly with exceeding values of thermophoresis parameter Nt, Hartman number, Brownian motion parameter Nb, ϵ, Biot number Bi and radiation parameter Rd. The volume fraction of nanoparticles rises with activation energy parameter EE, but it receded against chemical reaction parameter Ω, and Lewis number Le. The reliability and validity of the current numerical solution are ascertained by establishing convergence criteria and agreement with existing specific solutions.


Author(s):  
Hassan Waqas ◽  
Sumeira Yasmin ◽  
Sami Ullah Khan ◽  
Sumaira Qayyum ◽  
M. Ijaz Khan ◽  
...  

In recent years, the research for enhanced thermal transportation is centered around the utilization of nanostructures to avail the prospective benefits in areas of biomedical, metallurgy, polymer processing, mechanical and electrical engineering applications, food processing, ventilation, heat storage devices, nuclear systems cooling, electronic devices, solar preoccupation, magnetic sticking, bioengineering applications, etc. The thermal aspects of nanoliquids and associated dynamics properties are still necessary to be explored. In this thermal contribution, the flow of Casson nanofluid configured by an infinite disk is analyzed. The significance of Marangoni flow with activation energy, thermal and exponential space-dependent heat source, nonlinear thermal radiation and Joule heating impacts is also incorporated. Similarly, variables are affianced to recast the governing flow expressions into highly coupled nonlinear ODEs. The numerical simulation for the prevailing model is elucidated by applying the bvp4cbuilt-in function of computational commercial software MATLAB. Consequences of sundry parameters, namely, magnetic parameter, Prandtl number, radiation parameter, exponential space-dependent heat source parameter, thermal-dependent heat source parameter, Eckert number, Dufour parameter, Soret number, Schmidt number, Marangoni number and Marangoni ratio parameter, mixed convection parameter, buoyancy ratio parameter, bioconvection Rayleigh number, activation energy parameter, thermophoresis parameter, Brownian motion parameter, bioconvection Lewis number, Peclet number microorganisms difference variable versus involved flow profiles like velocity, temperature, concentration of nanoparticles and microorganism field are obtained and displayed through graphs and tabular data.



Author(s):  
RamReddy Chetteti ◽  
Venkata Rao Chukka

AbstractIn this article, we investigate the effects of Arrhenius activation energy with binary chemical reaction and convective boundary condition on natural convective flow over vertical frustum of a cone in a Buongiorno nanofluid under the presence of thermal radiation. The zero nanoparticle flux condition is used at the surface of frustum of a cone rather than the uniform wall condition to execute physically applicable results. For this complex flow model, a suitable non-similarity transformations are used initially and then Bivariate pseudo-spectral local linearisation method is used to solve the non-similar, coupled partial differential equations. Further, the convergence test and error analysis are conducted to verify the accuracy of numerical method. The effects of flow influenced parameters on the non-dimensional velocity, temperature, nanoparticle volume fraction and regular concentration profiles as well as on the skin friction, heat transfer rate, nanoparticle and regular mass transfer rates are analyzed.



Author(s):  
Sarwe D. U. ◽  
Shanker B. ◽  
Mishra R. ◽  
Kumar R. S. V. ◽  
Shekar M. N. R.

The present study deals with the Blasius and Sakiadis flow of Casson hybrid nanoliquid over a vertically moving plate under the influence of magnetic effect and Joule heating. Here, we considered Silver and Copper as nanoparticles suspended in 50% Ethylene-Glycol (EG) as base fluid. Further, the Arrhenius activation energy and convective boundary conditions are taken into the account. The set of PDEs of the current model are converted into ODEs by using suitable similarity variables. The reduced ODEs are numerically solved with the help of RKF-45 method by adopting shooting scheme. The impact of various pertinent parameters on the fluid fields is deliberated graphically. The result outcomes reveal that, rise in values of Casson parameter diminishes the velocity gradient. The escalated values of magnetic parameter decline the velocity profile but reverse trend is detected in thermal and concentration profiles. Moreover, the augmentation in the activation energy parameter elevates the concentration profile.



Author(s):  
Fazal Haq ◽  
Muzher Saleem ◽  
Muhammad Ijaz Khan

Abstract Present article addresses mixed convection magnetohydrodynamic Casson nanomaterial flow by stretchable cylinder. The effects of thermal, solutal and motile density stratifications at the boundary of the surface are accounted. Flow governing expressions are acquired considering aspects of permeability, thermal radiation, chemical reaction, viscous dissipation and activation energy. The obtained flow model is made dimensionless through transformations and then tackled by NDsolve code in Mathematica. Physical impacts of sundry variables on nanomaterial velocity, temperature distribution, volume fraction of microorganisms and mass concentration is investigated through plots. Furthermore, quantities of engineering interest like surface drag force, heat transfer rate, density number and Sherwood number are computed and analyzed. We observed that fluid velocity diminishes for higher curvature variable, Casson fluid material variable, Hartmann number and permeability parameter. Fluid temperature has a direct relation with Eckert number, thermophoresis variable, Brownian dispersal parameter, Prandtl number and Hartmann number. Volume fraction of gyrotactic microorganisms is decreasing function of bioconvection Lewis number, stratification parameter and bioconvection Peclet number. Detailed observations are itemized at the end.



Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 207 ◽  
Author(s):  
Bagh Ali ◽  
Xiaojun Yu ◽  
Muhammad Tariq Sadiq ◽  
Ateeq Ur Rehman ◽  
Liaqat Ali

The present study investigated the steady magnetohydrodynamics of the axisymmetric flow of a incompressible, viscous, electricity-conducting nanofluid with convective boundary conditions and thermo-diffusion over a radially stretched surface. The nanoparticles’ volume fraction was passively controlled on the boundary, rather than actively controlled. The governing non-linear partial differential equations were transformed into a system of nonlinear, ordinary differential equations with the aid of similarity transformations which were solved numerically, using the very efficient variational finite element method. The coefficient of skin friction and rate of heat transfer, and an exact solution of fluid flow velocity, were contrasted with the numerical solution gotten by FEM. Excellent agreement between the numerical and exact solutions was observed. The influences of various physical parameters on the velocity, temperature, and solutal and nanoparticle concentration profiles are discussed by the aid of graphs and tables. Additionally, authentication of the convergence of the numerical consequences acquired by the finite element method and the computations was acquired by decreasing the mesh level. This exploration is significant for the higher temperature of nanomaterial privileging technology.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiu-Hong Shi ◽  
Aamir Hamid ◽  
M. Ijaz Khan ◽  
R. Naveen Kumar ◽  
R. J. Punith Gowda ◽  
...  

AbstractIn this study, a mathematical model is developed to scrutinize the transient magnetic flow of Cross nanoliquid past a stretching sheet with thermal radiation effects. Binary chemical reactions and heat source/sink effects along with convective boundary condition are also taken into the consideration. Appropriate similarity transformations are utilized to transform partial differential equations (PDE’s) into ordinary ones and then numerically tackled by shooting method. The impacts of different emerging parameters on the thermal, concentration, velocity, and micro-rotation profiles are incorporated and discussed in detail by means of graphs. Results reveal that, the escalation in magnetic parameter and Rayleigh number slowdowns the velocity and momentum of the fluid. The increase in Biot number, radiation and heat sink/source parameters upsurges the thermal boundary but, converse trend is seen for escalating Prandtl number. The density number of motile microorganisms acts as a growing function of bioconvection Lewis number and declining function of bioconvection Peclet number.



2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Yves Pauchard ◽  
Todor G. Ivanov ◽  
David D. McErlain ◽  
Jaques S. Milner ◽  
J. Robert Giffin ◽  
...  

High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.



2006 ◽  
Vol 03 (01) ◽  
pp. 115-135 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
JIAN-JUN ZHU ◽  
K. Y. SZE

An ad hoc one-dimensional finite element formulation is developed for the eigenanalysis of inplane singular electroelastic fields at material and geometric discontinuities in piezoelectric elastic materials by using the eigenfunction expansion procedure and the weak form of the governing equations for prismatic sectorial domains composed of piezoelectrics, composites or air. The order of the electroelastic singularities and the angular variation of the stress and electric displacement fields are obtained with the formulation. The influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the singular electroelastic fields and the order of their singularity are also examined. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical solutions for piezoelectric and composite multi-material wedges. The nature and speed of convergence suggests that the present eigensolution could be used in developing hybrid elements for use along with standard elements to yield accurate and computationally efficient solutions to problems having complex global geometries leading to singular electroelastic states.



Author(s):  
Luis Celaya-García ◽  
Miguel Gutierrez-Rivera ◽  
Elías Ledesma-Orozco ◽  
Salvador M. Aceves

Abstract This article describes the manufacture, testing, and finite element modeling of prototype pressure vessels made of steel and reinforced with high-strength steel wire in the cylindrical part. Vessel prototypes were manufactured with pipe fittings and either no wire reinforcement, one layer of wire reinforcement, or two layers of wire reinforcement, with the purpose of developing an improved understanding of the effect of the wire reinforcement, and the number of reinforcement layers on prototype pressure strength. Pressure tests were conducted for instrumented vessels to determine strength up to 70 bar with a test system equipped with pressure and velocity regulators to guarantee the stability of the supplied flow and improve measurement accuracy and repeatability. Finite element modeling is conducted with the commercial code ANSYS and equivalent orthotropic properties obtained with the unit cell method, assuming a high value for the volume fraction of steel wire, and a matrix with low elastic properties compared with those of the steel wire. The results show that there is an interaction between the cylindrical part and the reinforcing wire, and that this relation is affected by external factors resulting from manufacturing process and material properties. Strain reduction in prototypes with thicker reinforcement is an indicator of the improvement on pressure resistance.



Sign in / Sign up

Export Citation Format

Share Document