Radiation Characteristics of Promising Algae for CO2 Fixation and Biofuel Production

Author(s):  
Halil Berberog˘lu ◽  
Pedro S. Gomez ◽  
Laurent Pilon

This paper reports experimental measurements of the radiation characteristics of green algae used for carbon dioxide fixation via photosynthesis. Particular attention was paid to three widely used species namely Botryococcus braunii, Chlorella sp., and Chlorococcum littorale. Their extinction and absorption coefficients were obtained from normal-normal and normal-hemispherical transmittance measurements over the spectral range from 400 to 800 nm. Moreover, a polar nephelometer is used to measure the scattering phase function of the microorganisms at 632.8 nm. It was observed that for all strains, scattering dominates over absorption. The magnitudes of the extinction and scattering cross-section are functions of the size, shape, and chlorophyll content of each strains in a non-trivial manner. Absorption peaks at 435, 475, and 676 nm corresponding to chlorophyll a and chlorophyll b have been clearly identified in the three species considered. The results can be used for scaling and optimization of CO2 fixation in ponds or photobioreactors as well as in the development of controlled ecological life support systems.

1986 ◽  
Vol 108 (2) ◽  
pp. 271-276 ◽  
Author(s):  
M. P. Mengu¨c¸ ◽  
R. Viskanta

A solution of the radiative transfer equation for an axisymmetric cylindrical enclosure containing radiatively participating gases and particles is presented. Nonhomogeneities of the radiative properties of the medium as well as of the radiation characteristics of the boundaries are allowed for, and the boundaries are assumed to be diffusely emitting and reflecting. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates. The model for radiative transfer is based on the P1 and P3-spherical harmonics approximations. Numerical solutions of model equations are obtained using finite-difference as well as finite-element schemes.


2012 ◽  
Vol 512-515 ◽  
pp. 397-400
Author(s):  
Jun Zhi Liu ◽  
Ya Ming Ge ◽  
Guang Ming Tian

This study examined the effects of an adenine-type cytokinin 6-benzylaminopurine (6-BA) on the growth and metabolism characteristics of Botryococcus braunii, one of the most promising oil-rich algae for biofuel production. The results showed that 6-BA of low dose (0.1-1.0 mg L-1) would enhance the algal growth rate and biochemical synthesis, whereas too much (5.0 mg L-1) would be lethally toxic for B. braunii. Noticingly, though the maximum algal growth rate, chlorophyll and β-carotenoid content were observed in the treatment with 0.5 and/or 1.0 mg L-1 6-BA, both the maximum algal hydrocarbon content and the highest hydrocarbon productivity were observed in the treatment with 0.1 mg L-1 6-BA, which were respectively 2.45 and 3.48 times of the control (39.1% vs. 16.0%, 546 mg L-1 vs. 157 mg L-1). This finding has great implications for improving algae biofuels production by phytohormone.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Gautham Krishnamoorthy ◽  
Caitlyn Wolf

This study assesses the required fidelities in modeling particle radiative properties and particle size distributions (PSDs) of combusting particles in Computational Fluid Dynamics (CFD) investigations of radiative heat transfer during oxy-combustion of coal and biomass blends. Simulations of air and oxy-combustion of coal/biomass blends in a 0.5 MW combustion test facility were carried out and compared against recent measurements of incident radiative fluxes. The prediction variations to the combusting particle radiative properties, particle swelling during devolatilization, scattering phase function, biomass devolatilization models, and the resolution (diameter intervals) employed in the fuel PSD were assessed. While the wall incident radiative flux predictions compared reasonably well with the experimental measurements, accounting for the variations in the fuel, char and ash radiative properties were deemed to be important as they strongly influenced the incident radiative fluxes and the temperature predictions in these strongly radiating flames. In addition, particle swelling and the diameter intervals also influenced the incident radiative fluxes primarily by impacting the particle extinction coefficients. This study highlights the necessity for careful selection of particle radiative property, and diameter interval parameters and the need for fuel fragmentation models to adequately predict the fly ash PSD in CFD simulations of coal/biomass combustion.


2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

<p>1. INTRODUCTION</p><p>The Mars Science Laboratory (MSL) is located in Gale Crater (4.5°S, 137.4°E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L<sub>s</sub>=50°-150°), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.</p><p>Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L<sub>s</sub>~188° to L<sub>s</sub>~250° of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.</p><p>2. METHODS</p><p>The PFSS consists of 9 cloud movies of three frames each, taken using MSL’s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.  In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=67584351a5c2fde95856e0760f04bbf3&ct=x&pn=gnp.elif&d=1" alt="Figure 1 – Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35" width="800" height="681"></p><p>Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.</p><p>3. RESULTS AND DISCUSSION</p><p>There were a total of 26 PFSS observations taken in MY 35 between L<sub>s</sub>~50°-160°, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season.  </p><p>Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 414 ◽  
Author(s):  
Mikhail Panchenko ◽  
Svetlana Terpugova ◽  
Victor Pol’kin ◽  
Valerii Kozlov ◽  
Dmitry Chernov

The paper presents the generalized empirical model of the aerosol optical characteristics in the lower 5-km layer of the atmosphere of West Siberia. The model is based on the data of long-term airborne sensing of the vertical profiles of the angular scattering coefficient, aerosol disperse composition, as well as the content of absorbing particles. The model provides for retrieval of the aerosol optical characteristics in visible and near IR wavelength ranges (complex refractive index, scattering and absorption coefficients, optical depth, single scattering albedo, and asymmetry factor of the scattering phase function). The main attention in the presented version of the model is given to two aspects: The study of the effect of the size spectrum of the absorbing substance in the composition of aerosol particles on radiative-relevant parameters (the single scattering albedo (SSA) and the asymmetry factor (AF)) and the consideration of different algorithms for taking into account the relative humidity of air. The ranges of uncertainty of SSA and AF at variations in the modal radius of the absorbing fraction at different altitudes in the troposphere are estimated.


Sign in / Sign up

Export Citation Format

Share Document