Impact Modeling for the Double Asteroid Redirection Test Mission

Author(s):  
Emma S.G. Rainey ◽  
Angela M. Stickle ◽  
Andrew F. Cheng ◽  
Andrew S. Rivkin ◽  
Nancy L. Chabot ◽  
...  

Abstract The Asteroid Impact Deflection Assessment (AIDA) collaboration is a joint ESA-NASA planetary defense collaboration that will include the first full-scale test of an asteroid deflection by kinetic impactor [1]. The AIDA collaboration comprises two independent spacecraft, the NASA-sponsored Double Asteroid Redirection Test (DART) and the ESA-led Hera. In September 2022 the DART spacecraft will impact the secondary member of the binary asteroid system 65803 Didymos (Didymos-B) at a speed of ~6.7 km/s and mass ~500 kg. The resulting period change in the orbit of Didymos-B will be measured using Earth-based observations. Hera will arrive post-impact and perform detailed measurements to characterize Didymos-B.

2020 ◽  
Author(s):  
Harrison Agrusa ◽  
Kleomenis Tsiganis ◽  
Ioannis Gkolias ◽  
Derek Richardson ◽  
Alex Davis ◽  
...  

<p>NASA’s Double Asteroid Redirection Test (DART) is designed to be the first demonstration of a kinetic impactor for planetary defense against a small body impact hazard. The target is the smaller component of the Didymos-Dimorphos binary asteroid system. The DART impact will abruptly change the relative velocity of the secondary (Dimorphos), increasing the binary eccentricity and exciting librations in the secondary. The observed change in the binary orbit period will be used to infer the “beta factor”, or the momentum transfer efficiency, an important parameter used in planetary defense. The post-impact spin and librational dynamics are expected to be highly dependent on the momentum transferred to the target (i.e., beta) and the shape of the secondary, which is still unconstrained.</p> <p>In this work, we explore the possible post-impact spin state of Dimorphos, as a function of its shape and beta, assuming it has an ellipsoidal shape and that both bodies have a uniform density. We have conducted attitude dynamics simulations with a modified 3-D spin-orbit model, accounting for the secondary’s shape and the primary’s oblateness, to understand the underlying dynamical structure of the system. In addition, we have used the radar-derived polyhedral shape model of Didymos in high-fidelity Full Rigid Two-Body Problem (FR2BP) simulations to capture the fully three-dimensional nature of the problem. We consider the outcomes from a simplified planar impact, where the DART momentum is transferred within the binary orbit plane, opposite the motion of Dimorphos, in addition to a more realistic case that accounts for the full DART velocity vector (which contains out-of-plane components).</p> <p>With both simulation tools, we produce the expected signatures of the 1:1 and 2:1 secondary resonances between the free and forced libration periods, corresponding to axial ratios of a/b = 1.414 and a/b = 1.087, respectively. For moderate values of beta (~3), we find that the libration amplitude can exceed ~40 degrees in most cases. For some possible axial ratios, it is even possible to achieve a libration amplitude exceeding 40 degrees with beta values as low as 1. In addition, both codes reveal that the secondary may be attitude unstable in many cases, and can enter a chaotic tumbling state for larger values of beta (~5). In some cases, Dimorphos is able to break from its assumed 1:1 spin-orbit resonance.</p> <p>In the case with a more realistic impact geometry (where some momentum is transferred out-of-plane), the results are relatively similar. The most noticeable difference is in the cases that result in a chaotic tumbling state. In those cases, the characteristic timescale for entering the chaotic tumbling state is much shorter – typically only several orbit periods are required. We also discuss the feasibility of detecting the post-impact spin state of Dimorphos with ground-based observations.</p> <p>This study was supported in part by the DART mission, NASA Contract # NNN06AA01C to JHU/APL. The work of K.T. and I.G. is supported by the EC Horizon 2020 research and innovation programme, under grant agreement No. 870377 (project "NEO-MAPP"). Some of the simulations herein were carried out on The University of Maryland Astronomy Department’s YORP cluster, administered by the Center for Theory and Computation.</p>


2021 ◽  
Vol 2 (6) ◽  
pp. 242
Author(s):  
Alex J. Meyer ◽  
Ioannis Gkolias ◽  
Michalis Gaitanas ◽  
Harrison F. Agrusa ◽  
Daniel J. Scheeres ◽  
...  

Abstract The Double Asteroid Redirection Test (DART) mission will be the first test of a kinetic impactor as a means of planetary defense. In late 2022, DART will collide with Dimorphos, the secondary in the Didymos binary asteroid system. The impact will cause a momentum transfer from the spacecraft to the binary asteroid, changing the orbit period of Dimorphos and forcing it to librate in its orbit. Owing to the coupled dynamics in binary asteroid systems, the orbit and libration state of Dimorphos are intertwined. Thus, as the secondary librates, it also experiences fluctuations in its orbit period. These variations in the orbit period are dependent on the magnitude of the impact perturbation, as well as the system’s state at impact and the moments of inertia of the secondary. In general, any binary asteroid system whose secondary is librating will have a nonconstant orbit period on account of the secondary’s fluctuating spin rate. The orbit period variations are typically driven by two modes: a long period and a short period, each with significant amplitudes on the order of tens of seconds to several minutes. The fluctuating orbit period offers both a challenge and an opportunity in the context of the DART mission. Orbit period oscillations will make determining the post-impact orbit period more difficult but can also provide information about the system’s libration state and the DART impact.


1994 ◽  
Vol 1 (1) ◽  
pp. 77-83
Author(s):  
Yoshiji Moro ◽  
Tomoo Fujita ◽  
Takeshi Kanno ◽  
Akira Kobayashi

2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

2020 ◽  
pp. 1420326X2097902
Author(s):  
Hai-Xia Xu ◽  
Yu-Tong Mu ◽  
Yin-Ping Zhang ◽  
Wen-Quan Tao

Most existing models and standards for volatile organic compounds emission assume that contaminants are uniform in the testing devices. In this study, a three-dimensional transient numerical model was proposed to simulate the mass transport process based on a full-scale test chamber with a mixing fan, and the airflow field and contaminants concentration distribution were obtained within the chamber under airtight and ventilated conditions. The model was validated by comparing the numerical results with experimental data. The numerical results show that the contaminant source position and the airflow field characteristics have significant impact on the contaminant mixing, and the fan rotation has an important role in accelerating mixing. In the initial mixing stage, the concentration distribution is obviously uneven; as the mixing progresses, it gradually reaches acceptable uniformity except for some sensitive regions, such as high concentration region at the injection point of the contaminants and low concentration region at the air inlet. To ensure test accuracy, the monitor should avoid above sensitive regions; and some special regions are recommended where contaminant concentration uniformity can be reached sooner. The ventilated chamber results indicate that the mixture of contaminants in the chamber is actually better than the results shown by conventional test method.


2002 ◽  
Vol 218 (1-3) ◽  
pp. 169-178 ◽  
Author(s):  
J.G Liu ◽  
H.L Xiao ◽  
C.P Li

2014 ◽  
Vol 501-504 ◽  
pp. 2132-2137

Removed due to plagiarism. The original was published by: Liu, Deng and Chu (eds) © 2008 Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg Geotechnical Engineering for Disaster Mitigation and Rehabilitation http://www.ftsl.itb.ac.id/kk/geotechnical_engineering/wp-content/uploads/2008/06/irsyam-165.pdf


Sign in / Sign up

Export Citation Format

Share Document