On the post-impact spin state of the secondary component of the Didymos-Dimorphos binary asteroid system

2020 ◽  
Author(s):  
Harrison Agrusa ◽  
Kleomenis Tsiganis ◽  
Ioannis Gkolias ◽  
Derek Richardson ◽  
Alex Davis ◽  
...  

<p>NASA’s Double Asteroid Redirection Test (DART) is designed to be the first demonstration of a kinetic impactor for planetary defense against a small body impact hazard. The target is the smaller component of the Didymos-Dimorphos binary asteroid system. The DART impact will abruptly change the relative velocity of the secondary (Dimorphos), increasing the binary eccentricity and exciting librations in the secondary. The observed change in the binary orbit period will be used to infer the “beta factor”, or the momentum transfer efficiency, an important parameter used in planetary defense. The post-impact spin and librational dynamics are expected to be highly dependent on the momentum transferred to the target (i.e., beta) and the shape of the secondary, which is still unconstrained.</p> <p>In this work, we explore the possible post-impact spin state of Dimorphos, as a function of its shape and beta, assuming it has an ellipsoidal shape and that both bodies have a uniform density. We have conducted attitude dynamics simulations with a modified 3-D spin-orbit model, accounting for the secondary’s shape and the primary’s oblateness, to understand the underlying dynamical structure of the system. In addition, we have used the radar-derived polyhedral shape model of Didymos in high-fidelity Full Rigid Two-Body Problem (FR2BP) simulations to capture the fully three-dimensional nature of the problem. We consider the outcomes from a simplified planar impact, where the DART momentum is transferred within the binary orbit plane, opposite the motion of Dimorphos, in addition to a more realistic case that accounts for the full DART velocity vector (which contains out-of-plane components).</p> <p>With both simulation tools, we produce the expected signatures of the 1:1 and 2:1 secondary resonances between the free and forced libration periods, corresponding to axial ratios of a/b = 1.414 and a/b = 1.087, respectively. For moderate values of beta (~3), we find that the libration amplitude can exceed ~40 degrees in most cases. For some possible axial ratios, it is even possible to achieve a libration amplitude exceeding 40 degrees with beta values as low as 1. In addition, both codes reveal that the secondary may be attitude unstable in many cases, and can enter a chaotic tumbling state for larger values of beta (~5). In some cases, Dimorphos is able to break from its assumed 1:1 spin-orbit resonance.</p> <p>In the case with a more realistic impact geometry (where some momentum is transferred out-of-plane), the results are relatively similar. The most noticeable difference is in the cases that result in a chaotic tumbling state. In those cases, the characteristic timescale for entering the chaotic tumbling state is much shorter – typically only several orbit periods are required. We also discuss the feasibility of detecting the post-impact spin state of Dimorphos with ground-based observations.</p> <p>This study was supported in part by the DART mission, NASA Contract # NNN06AA01C to JHU/APL. The work of K.T. and I.G. is supported by the EC Horizon 2020 research and innovation programme, under grant agreement No. 870377 (project "NEO-MAPP"). Some of the simulations herein were carried out on The University of Maryland Astronomy Department’s YORP cluster, administered by the Center for Theory and Computation.</p>

Author(s):  
Emma S.G. Rainey ◽  
Angela M. Stickle ◽  
Andrew F. Cheng ◽  
Andrew S. Rivkin ◽  
Nancy L. Chabot ◽  
...  

Abstract The Asteroid Impact Deflection Assessment (AIDA) collaboration is a joint ESA-NASA planetary defense collaboration that will include the first full-scale test of an asteroid deflection by kinetic impactor [1]. The AIDA collaboration comprises two independent spacecraft, the NASA-sponsored Double Asteroid Redirection Test (DART) and the ESA-led Hera. In September 2022 the DART spacecraft will impact the secondary member of the binary asteroid system 65803 Didymos (Didymos-B) at a speed of ~6.7 km/s and mass ~500 kg. The resulting period change in the orbit of Didymos-B will be measured using Earth-based observations. Hera will arrive post-impact and perform detailed measurements to characterize Didymos-B.


2021 ◽  
Vol 2 (6) ◽  
pp. 242
Author(s):  
Alex J. Meyer ◽  
Ioannis Gkolias ◽  
Michalis Gaitanas ◽  
Harrison F. Agrusa ◽  
Daniel J. Scheeres ◽  
...  

Abstract The Double Asteroid Redirection Test (DART) mission will be the first test of a kinetic impactor as a means of planetary defense. In late 2022, DART will collide with Dimorphos, the secondary in the Didymos binary asteroid system. The impact will cause a momentum transfer from the spacecraft to the binary asteroid, changing the orbit period of Dimorphos and forcing it to librate in its orbit. Owing to the coupled dynamics in binary asteroid systems, the orbit and libration state of Dimorphos are intertwined. Thus, as the secondary librates, it also experiences fluctuations in its orbit period. These variations in the orbit period are dependent on the magnitude of the impact perturbation, as well as the system’s state at impact and the moments of inertia of the secondary. In general, any binary asteroid system whose secondary is librating will have a nonconstant orbit period on account of the secondary’s fluctuating spin rate. The orbit period variations are typically driven by two modes: a long period and a short period, each with significant amplitudes on the order of tens of seconds to several minutes. The fluctuating orbit period offers both a challenge and an opportunity in the context of the DART mission. Orbit period oscillations will make determining the post-impact orbit period more difficult but can also provide information about the system’s libration state and the DART impact.


2020 ◽  
Vol 493 (1) ◽  
pp. 171-183
Author(s):  
H S Wang ◽  
X Y Hou

ABSTRACT This article studies the secondary’s rotation in a synchronous binary asteroid system in which the secondary enters the 1:1 spin-orbit resonance. The model used is the planar full two-body problem, composed of a spherical primary plus a triaxial ellipsoid secondary. Compared with classical spin-orbit work, there are two differences: (1) influence of the secondary’s rotation on the mutual orbit is considered and (2) instead of the Hamiltonian approach, the approach of periodic orbits is adopted. Our studies find the following. (1) The genealogy of the two families of periodic orbits is the same as that of the families around triangular libration points in the restricted three-body problem. That is, the long-period family terminates on to a short-period orbit travelling N times. (2) In the limiting case where the secondary’s mass is negligible, our results can be reduced to classical spin-orbit theory, by equating the long-period orbit with free libration and the short-period orbit with the forced libration caused by orbit eccentricity. However, the two models show obvious differences when the secondary’s mass is non-negligible. (3) By studying the stability of periodic orbits for a specific binary asteroid system, we are able to obtain the maximum libration amplitude of the secondary (which is usually less than 90°) and the maximum mutual orbit eccentricity that does not break the secondary’s synchronous state. We also find an anti-correlation between the secondary’s libration amplitude and the orbit eccentricity. The (65803) Didymos system is taken as an example to show the results.


2021 ◽  
Vol 7 (5) ◽  
pp. eabe2892
Author(s):  
Dmitry Shcherbakov ◽  
Petr Stepanov ◽  
Shahriar Memaran ◽  
Yaxian Wang ◽  
Yan Xin ◽  
...  

Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic, and topological phenomena and applications. In bulk materials, SOC strength is a constant. Here, we demonstrate SOC and intrinsic spin splitting in atomically thin InSe, which can be modified over a broad range. From quantum oscillations, we establish that the SOC parameter α is thickness dependent; it can be continuously modulated by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Unexpectedly, α could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.


2001 ◽  
Author(s):  
Sung S. Suh ◽  
H. Thomas Hahn ◽  
Nanlin Han ◽  
Jenn-Ming Yang

Abstract Failure of stiffened panels under compression is preceded by buckling of their skin and hence is affected by the presence of out-of-plane stresses. One of the promising methods of preventing premature delamination is stitching. The present paper discusses the effect of such stitching on compression behavior of blade-stiffened panels that were fabricated from plain weave AS4/3501-6 through resin film infusion process. Kevlar 29 yarn was used at a stitch density of 9.92 stitches per cm2. Some of the panels were damaged by drop-weight impact before compression testing. For comparison purposes unstitched panels with the same materials and dimensions were also tested under the same loading conditions. Stitching resulted in a 10% improvement in strength in the absence of any intentional damage. The beneficial effect of stitching was most obvious when the panels were impacted on a flange: a 50% improvement was observed in post-impact strength. However, stitching could not prevent stiffener from failure when impacted directly. Thus stitching had no beneficial effect when impact occurred on a stiffener. A buckling and post-buckling analysis was carried out using 3-D shell elements on the Abaqus. Predictions were in fairly good agreement with the experimental data.


2020 ◽  
Author(s):  
Min-Gu Kang ◽  
Jong-Guk Choi ◽  
Jimin Jeong ◽  
Jae Yeol Park ◽  
Hyeon-Jong Park ◽  
...  

Abstract Spin-orbit coupling effect in structures with broken inversion symmetry, known as the Rashba effect, facilitates spin-orbit torques (SOTs) in heavy metal/ferromagnet/oxide structures, along with the spin Hall effect. Electric-field control of the Rashba effect is established for semiconductor interfaces, but it is challenging in structures involving metals owing to the screening effect. Here, we report that the Rashba effect in Pt/Co/AlOx structures is laterally modulated by electric voltages, generating out-of-plane SOTs. This enables field-free switching of the perpendicular magnetization and electrical control of the switching polarity. Changing the gate oxide reverses the sign of out-of-plane SOT while maintaining the same sign of voltage-controlled magnetic anisotropy, which confirms the Rashba effect at the Co/oxide interface is a key ingredient of the electric-field modulation. The electrical control of SOT switching polarity in a reversible and non-volatile manner can be utilized for programmable logic operations in spintronic logic-in-memory devices.


2020 ◽  
Vol 497 (2) ◽  
pp. 1627-1633 ◽  
Author(s):  
Vedad Kunovac Hodžić ◽  
Amaury H M J Triaud ◽  
David V Martin ◽  
Daniel C Fabrycky ◽  
Heather M Cegla ◽  
...  

ABSTRACT A dozen short-period detached binaries are known to host transiting circumbinary planets. In all circumbinary systems so far, the planetary and binary orbits are aligned within a couple of degrees. However, the obliquity of the primary star, which is an important tracer of their formation, evolution, and tidal history, has only been measured in one circumbinary system until now. EBLM J0608-59/TOI-1338 is a low-mass eclipsing binary system with a recently discovered circumbinary planet identified by TESS. Here, we perform high-resolution spectroscopy during primary eclipse to measure the projected stellar obliquity of the primary component. The obliquity is low, and thus the primary star is aligned with the binary and planetary orbits with a projected spin–orbit angle β = 2${_{.}^{\circ}}$8 ± 17${_{.}^{\circ}}$1. The rotation period of 18.1 ± 1.6 d implied by our measurement of vsin i⋆ suggests that the primary has not yet pseudo-synchronized with the binary orbit, but is consistent with gyrochronology and weak tidal interaction with the binary companion. Our result, combined with the known coplanarity of the binary and planet orbits, is suggestive of formation from a single disc. Finally, we considered whether the spectrum of the faint secondary star could affect our measurements. We show through simulations that the effect is negligible for our system, but can lead to strong biases in vsin i⋆ and β for higher flux ratios. We encourage future studies in eclipse spectroscopy test the assumption of a dark secondary for flux ratios ≳1 ppt.


2019 ◽  
Vol 631 ◽  
pp. A149
Author(s):  
A. Rożek ◽  
S. C. Lowry ◽  
M. C. Nolan ◽  
P. A. Taylor ◽  
L. A. M. Benner ◽  
...  

Context. The potentially hazardous asteroid (85990) 1999 JV6 has been a target of previously published thermal-infrared observations and optical photometry. It has been identified as a promising candidate for possible Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect detection. Aims. The YORP effect is a small thermal-radiation torque considered to be a key factor in spin-state evolution of small Solar System bodies. In order to detect YORP on 1999 JV6 we developed a detailed shape model and analysed the spin-state using both optical and radar observations. Methods. For 1999 JV6, we collected optical photometry between 2007 and 2016. Additionally, we obtained radar echo-power spectra and imaging observations with Arecibo and Goldstone planetary radar facilities in 2015, 2016, and 2017. We combined our data with published optical photometry to develop a robust physical model. Results. We determine that the rotation pole resides at negative latitudes in an area with a 5° radius close to the south ecliptic pole. The refined sidereal rotation period is 6.536787 ± 0.000007 h. The radar images are best reproduced with a bilobed shape model. Both lobes of 1999 JV6 can be represented as oblate ellipsoids with a smaller, more spherical component resting at the end of a larger, more elongated component. While contact binaries appear to be abundant in the near-Earth population, there are only a few published shape models for asteroids in this particular configuration. By combining the radar-derived shape model with optical light curves we determine a constant-period solution that fits all available data well. Using light-curve data alone we determine an upper limit for YORP of 8.5 × 10−8 rad day−2. Conclusions. The bifurcated shape of 1999 JV6 might be a result of two ellipsoidal components gently merging with each other, or a deformation of a rubble pile with a weak-tensile-strength core due to spin-up. The physical model of 1999 JV6 presented here will enable future studies of contact binary asteroid formation and evolution.


Sign in / Sign up

Export Citation Format

Share Document