Control Oriented Modelling of Engine IMEP Variation

Author(s):  
Qilun Zhu ◽  
Robert Prucka ◽  
Shu Wang ◽  
Michael Prucka ◽  
Hussein Dourra

Engine cycle-by-cycle combustion variation is a potential source of emissions and drivability issues in automobiles, and has become an important concern for engine control engineers. The nature of turbulent combustion in IC engines means that combustion variations cannot be eliminated completely. Furthermore, it is inevitable for the engine to run at conditions with high combustion variations in most vehicle applications. For example, during gear shifts spark timing can be changed dramatically to help track the fast transitions of torque demand, often resulting in high Coefficient of Variation in Indicated Mean Effective Pressure (COV of IMEP). Under these circumstances, the control engineers have to weigh between combustion variation and other performance demands (i.e. fast torque tracking). An accurate online estimation of COV of IMEP can be beneficial to this process. A calibrated map of COV of IMEP versus engine operating conditions can be an option for engines with few control actuators. As the number of control actuators increases, combustion variation modelling using inputs with physical representations becomes favorable due to the potential for reduced calibration effort. However, since COV of IMEP is a stochastic variable describing the distribution of IMEP output, it can only be modelled empirically. This research proposes a control-oriented real-time COV of IMEP model based on an Artificial Neural Network (ANN) and inputs from turbulent combustion research. The effects of premixed turbulent combustion variation are analyzed with flame regime analysis in this research after a brief introduction of the experimental setup and engine information. In-cylinder thermodynamics are then evaluated to reveal how the changes of heat release transform into the variation of cylinder pressure, producing COV of IMEP. A range of model input parameters are assessed to determine the set that produces the most accurate prediction of IMEP variation with minimal computational requirements. An Artificial Neural Network (ANN) is applied to capture the nonlinear coupled correlations between COV of IMEP and model inputs. The ANN is combined with a regression pretreatment to reduce network size and improve extrapolation stability. This computationally efficient single-layer three-neuron ANN COV of IMEP model achieved 0.29% normalized Root Mean Square Error (RMSE). Dynamometer tests show that the model performs well outside the training region.

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Author(s):  
Hadi Salehi ◽  
Mosayyeb Amiri ◽  
Morteza Esfandyari

In this work, an extensive experimental data of Nansulate coating from NanoTechInc were applied to develop an artificial neural network (ANN) model. The Levenberg–Marquart algorithm has been used in network training to predict and calculate the energy gain and energy saving of Nansulate coating. By comparing the obtained results from ANN model with experimental data, it was observed that there is more qualitative and quantitative agreement between ANN model values and experimental data results. Furthermore, the developed ANN model shows more accurate prediction over a wide range of operating conditions. Also, maximum relative error of 3% was observed by comparison of experimental and ANN simulation results.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2216 ◽  
Author(s):  
Ravi Kishore ◽  
Roop Mahajan ◽  
Shashank Priya

Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs is related to advancements in materials, figure of merit, and methods for module manufacturing. However, rapid optimization techniques for TEGs have not kept pace with these advancements, which presents a challenge regarding tailoring the device architecture for varying operating conditions. Here, we address this challenge by providing artificial neural network (ANN) models that can predict TEG performance on demand. Out of the several ANN models considered for TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%. The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 minutes needed for the traditional numerical simulations.


2010 ◽  
Vol 16 (4) ◽  
pp. 329-343 ◽  
Author(s):  
Sandip Lahiri ◽  
K.C. Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and differential evolution technique (ANN - DE) for efficient tuning of ANN Meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN - DE method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters. .


2020 ◽  
Vol 8 (8) ◽  
pp. 377-385
Author(s):  
KHALED MOHAMMED BIR GAMAL ◽  
SUPRIYA P. PANDA ◽  
M. V. RAMANA MURTHY

Induction motor plays an important role in the industrial, commercial and residential industries, owing to its immense advantages over the opposite types of motors. Such motors have to operate under different operating conditions that cause engine degradation leading to fault occurrences. There are numerous fault detection techniques available. There are numerous fault detection techniques available. The technique used in this paper to prove the effect of static air gap eccentricity on behaving or performing of the three-phase induction motor is the artificial neural network (ANN) as ANN depends on detecting the fault on the amplitude of positive and negative harmonics of frequencies. In this paper, we used two motors to achieve real malfunctions and to get the required data and for three different load tests. In this paper, we adopted MCSA to detect the fault based on the stator current. The ANN training algorithm used in this paper is back propagation and feed forward. The inputs of ANN are the speed and the amplitudes of the positive and the negative harmonics, and the type of fault is the output. To distinguish between healthy and faulty motor, the input data of ANN are well-trained via experiments test. The methodology applied in this paper was MATLAB and present how we can distinguish between healthy and faulty motor.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Sign in / Sign up

Export Citation Format

Share Document