Characterization of a Lightly Loaded Underfloor Catalyzed Gasoline Particulate Filter in a Turbocharged Light Duty Truck

2021 ◽  
Author(s):  
Stanislav V. Bohac ◽  
Scott Ludlam

Abstract A test program to characterize the benefits and challenges of applying a European series production catalyzed gasoline particulate filter (GPF) to a U.S. Tier 2 turbocharged light duty truck (3.5L Ecoboost Ford F150) in the underfloor location was initiated at the U.S. Environmental Protection Agency. The turbos and underfloor location keep the GPF relatively cool and minimize passive regeneration relative to other configurations. This study characterizes the relatively cool GPF in a lightly loaded state, approximately 0.1 to 0.4 g/L of soot loading, using four test cycles: 60 mph steady state, 4-phase FTP, HWFET, and US06. Measurements include GPF temperature, soot loading, GPF pressure drop, brake thermal efficiency (BTE), CO2, PM mass, elemental carbon (EC), filter-collected organic carbon (OC), CO, THC, and NOx emissions. The lightly loaded underfloor GPF achieves 85–99% reduction in PM mass, 98.5–100.0% reduction in EC, and 65–91% reduction in filter-collected OC, depending on test cycle. The smallest reductions in PM and EC occur in the US06 cycle due to mild GPF regeneration caused by GPF inlet temperature exceeding 500°C. EC dominates filter-collected OC without a GPF, while OC dominates EC with a GPF. Composite cycle CO, THC, and NOx emissions are reduced by the washcoat on the GPF but the low temperature location of the GPF does not make best use of the catalyzed washcoat. Cycle average pressure drop across the GPF ranged from 1.25 kPa in the 4-phase FTP to 4.64 kPa in the US06 but did not affect BTE or CO2 emissions in a measurable way in any test cycle.

2019 ◽  
pp. 146808741987457 ◽  
Author(s):  
Jun Zhang ◽  
Yanfei Li ◽  
Victor W Wong ◽  
Shijin Shuai ◽  
Jinzhu Qi ◽  
...  

Diesel particulate filters are indispensable for diesel engines to meet the increasingly stringent emission regulations. A large amount of ash would accumulate in the diesel particulate filter over time, which would significantly affect the diesel particulate filter performance. In this work, the lubricant-derived ash effects on diesel particulate filter pressure drop, diesel particulate filter filtration performance, diesel particulate filter temperature field during active regeneration, and diesel particulate filter downstream emissions during active regeneration were studied on an engine test bench. The test results show that the ash accumulated in the diesel particulate filter would decrease the diesel particulate filter pressure drop due to the “membrane effect” when the diesel particulate filter ash loading is lower than about 10 g/L, beyond which the diesel particulate filter pressure drop would be increased due to the reduction of diesel particulate filter effective volume. The ash loaded in the diesel particulate filter could significantly improve the diesel particulate filter filtration efficiency because it would fill the pores of diesel particulate filter wall. The diesel particulate filter peak temperature during active regeneration is consistent with the diesel particulate filter initial actual soot loading density prior to regeneration at various diesel particulate filter ash loading levels, while the diesel particulate filter maximum temperature gradient would increase with the diesel particulate filter ash loading increase, whether the diesel particulate filter is regenerated at the same soot loading level or the same diesel particulate filter pressure drop level. The ash accumulation in the diesel particulate filter shows little effects on diesel particulate filter downstream CO, total hydrocarbons, N2O emissions, and NO2/NO x ratio during active regeneration. However, a small amount of SO2 emissions was observed when the diesel particulate filter ash loading is higher than 10 g/L. The ash accumulated in the diesel particulate filter would increase the diesel particulate filter downstream sub-23 nm particle emissions but decrease larger particle emissions during active regeneration.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2701
Author(s):  
Mingfei Mu ◽  
Jonas Sjöblom ◽  
Nikhil Sharma ◽  
Henrik Ström ◽  
Xinghu Li

The abatement of particulate matter in gasoline vehicle exhaust has prompted the development of gasoline particulate filters (GPFs). The spatial distribution of the deposited particles inside a GPF has profound implications for its regeneration behavior, ash-induced aging, and multiscale modeling efforts. The connection cones will affect the flow into the monolith and the package structure needed to meet the system space requirements. In this paper, nonuniform rational B-splines (NURBSs) were applied to the cone design to optimize the flow uniformity and particle distribution inside a gasoline particulate filter. NURBS and conventional cones were manufactured using 3D printing, and the velocity profiles and pressure drops were measured under the loading of synthetic particles. The results shows that the cone shape will influence the pressure drop and the velocity profile, which is evaluated as the uniformity index. The test results indicate that better performance is achieved when using the NURBS cone, especially at low particle loads. The results also show that the cone shape (which determines the velocity profile) influences the particle deposition distribution, although the apparent pressure drops are similar. These results are important for exhaust aftertreatment system (EATS) design and optimization, where the NURBS cone can improve flow uniformity, which causes better particle deposition distribution and lower pressure drop.


2004 ◽  
Vol 5 (2) ◽  
pp. 163-173 ◽  
Author(s):  
O. A. Haralampous ◽  
I. P. Kandylas ◽  
G. C. Koltsakis ◽  
Z. C. Samaras

Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116019 ◽  
Author(s):  
Qingsong Zuo ◽  
Xinning Zhu ◽  
Jianping Zhang ◽  
Bin Zhang ◽  
Yuanyou Tang ◽  
...  

Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


Author(s):  
Sumanth Reddy Dadam ◽  
Michiel Van Nieuwstadt ◽  
Allen Lehmen ◽  
Vinod Kumar Ravi ◽  
Vivek Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document