Development of an Engineering Design Process and Associated Systems and Procedures for a UK Geological Disposal Facility

Author(s):  
Philip Rendell ◽  
Henry O’Grady ◽  
Brendan Breen ◽  
Alastair Clark ◽  
Steve Reece

In the United Kingdom the Nuclear Decommissioning Authority (NDA) has been charged with implementing Government policy for the long-term management of higher activity radioactive waste. The UK Government is leading a site selection process based on voluntarism and partnership with local communities interested in hosting such a facility and as set out in the ‘Managing Radioactive Waste Safely’ White Paper (2008). The NDA has set up the Radioactive Waste Management Directorate (RWMD) as the body responsible for planning, building and operating a geological disposal facility (GDF). RWMD will develop into a separately regulated Site Licence Company (SLC) responsible for the construction, operation and closure of the facility. RWMD will be the Design Authority for the GDF; requiring a formal process to ensure that the knowledge and integrity of the design is maintained. In 2010 RWMD published ‘Geological Disposal - Steps towards implementation’ which described the preparatory work that it is undertaking in planning the future work programme, and the phases of work needed to deliver the programme. RWMD has now developed a process for the design of the GDF to support this work. The engineering design process follows a staged approach, encompassing options development, requirements definition, and conceptual and detailed designs. Each stage finishes with a ‘stage gate’ comprising a technical review and a specific set of engineering deliverables. The process is intended to facilitate the development of the most appropriate design of GDF, and to support the higher level needs of both the project and the community engagement programmes. The process incorporates elements of good practices derived from other work programmes; including process mapping, issues and requirements management, and progressive design assurance. A set of design principles have been established, and supporting design guidance notes are being produced. In addition a requirements management system is being implemented for the identification, capture, analysis, update, verification, validation and acceptance of requirements for the GDF. This is to ensure that there are traceable links between requirements, and to identify and record the verification/validation of individual requirements. This paper describes the engineering design process and the supporting documents, systems and procedures. The paper addresses the relationship to the geological disposal programme timeline in ‘Geological Disposal - Steps towards implementation’ and, from there, to the UK Government ‘Managing Radioactive Waste Safely’ Programme. It also describes the next steps in the development of the design process, and some of the lessons learnt to date.

Author(s):  
Philip G. P. Rendell ◽  
Henry J. P. O’Grady ◽  
Malcolm F. Currie

The Radioactive Waste Management Directorate (RWMD) of the United Kingdom’s (UK) Nuclear Decommissioning Authority (NDA) has been given the responsibility for delivery of a Geological Disposal Facility (GDF) for the UK’s higher activity wastes in accordance with government policy. As part of this process, the RWMD has developed a project lifecycle, which addresses the overall lifecycle of the GDF in terms of five phases, from Preparatory Studies through to Operation and finally Closure, and is developing a staged approach to engineering design. The Engineering Design Process is broken down into seven stages, encompassing option development, requirements definition and preliminary and detailed design through to “design development during closure”. Each stage finishes with a formally defined milestone (a “gate”) comprising a technical review and a specific set of engineering deliverables. This paper describes the background to the UK GDF development programme, the organisational issues associated with the RWMD’s evolving role, the relationship between the top-level UK Government’s Managing Radioactive Waste Safely programme [1] and the RWMD engineering lifecycle, the formal reviews, the milestones and the overall contribution this makes to RWMD organisational development and UK regulatory approval. It also describes some of the lessons learnt.


2012 ◽  
Vol 76 (8) ◽  
pp. 3271-3278 ◽  
Author(s):  
S. J. Williams

AbstractGases will be generated in waste packages during their transport to a geological disposal facility (GDF), this generation will continue during GDF operations and after GDF closure. The range of gases produced will include flammable, radioactive and chemotoxic species. These must be managed to ensure safety during transport and operations, and the post-closure consequences need to be understood. The two primary post-closure gas issues for a GDF are the need for the system pressure to remain below a value at which irreversible damage to the engineered barrier system and host geology could occur, and the need to ensure that any flux of gas (in particular gaseous radionuclides) to the biosphere does not result in unacceptable risk. This paper provides an overview of the research of the Nuclear Decommissioning Authority, Radioactive Waste Management Directorate into gas generation and its migration from a GDF.


Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 67
Author(s):  
Andreas Humpe

The author proposes a new approach for bridge crack detection by a 360° camera on top of a drone. Traditionally, bridge inspection is performed manually and although the use of drones has been implemented before, researchers used standard high definition cameras underneath the drone. To make the approach comparable to the conventional approach, two bridges were selected in Germany and inspected for cracks and defects by applying both methods. The author follows an engineering design process and after developing a prototype of the drone with a 360° camera above the body of the drone, the system is built, tested, and the bridges are inspected. First, the critical parts of the bridges are inspected with an off-the-shelf drone with a high definition camera underneath the drone. The results provide a benchmark for comparison. Next, the new approach to bridge inspection by using a 360° camera on top of the drone is tested. The images of the critical parts of the bridge that were taken with the 360° camera on top of the drone are analyzed and compared to the images of the conventional approach with the camera underneath the drone. The results show that a 360° camera can be used for crack and defect detection with similar results to a standard high definition camera. Furthermore, the 360° camera is more suitable for inspecting corners or the ceiling of, e.g., an arch bridge.


Author(s):  
George Towler ◽  
Tim Hicks ◽  
Sarah Watson ◽  
Simon Norris

In June 2008 the UK government published a ‘White Paper’ as part of the “Managing Radioactive Waste Safety” (MRWS) programme to provide a framework for managing higher activity radioactive wastes in the long-term through geological disposal. The White Paper identifies that there are benefits to disposing all of the UK’s higher activity wastes (Low and Intermediate Level Waste (LLW and ILW), High Level Waste (HLW), Spent Fuel (SF), Uranium (U) and Plutonium (Pu)) at the same site, and this is currently the preferred option. It also notes that research will be required to support the detailed design and safety assessment in relation to any potentially detrimental interactions between the different modules. Different disposal system designs and associated Engineered Barrier Systems (EBS) will be required for these different waste types, i.e. ILW/LLW and HLW/SF. If declared as waste U would be disposed as ILW and Pu as HLW/SF. The Geological Disposal Facility (GDF) would therefore comprise two co-located modules (respectively for ILW/LLW and HLW/SF). This paper presents an overview of a study undertaken to assess the implications of co-location by identifying the key Thermo-Hydro-Mechanical-Chemical (THMC) interactions that might occur during both the operational and post-closure phases, and their consequences for GDF design, performance and safety. The MRWS programme is currently seeking expressions of interest from communities to host a GDF. Therefore, the study was required to consider a wide range of potential GDF host rocks and consistent, conceptual disposal system designs. Two example disposal concepts (i.e. combinations of host rock, GDF design including wasteform and layout, etc.) were carried forward for detailed assessment and a third for qualitative analysis. Dimensional and 1D analyses were used to identify the key interactions, and 3D models were used to investigate selected interactions in more detail. The results of this study show that it is possible for ILW/LLW and HLW/SF modules to be co-located without compromising key safety functions of different barrier components, and this reflects international precedents, e.g. the Andra and Nagra repository designs. There are two key technical issues that need to be managed in designing the geometry of the co-located GDF: (i) the heat flux from the HLW/SF module interacting with the ILW/LLW module, and (ii) the potential for development of an alkaline plume from the ILW/LLW module interacting with the HLW/SF module; particularly within fractured host rocks.


2012 ◽  
Vol 76 (8) ◽  
pp. 2995-3001 ◽  
Author(s):  
T. M. Beattie ◽  
S. J. Williams

AbstractThe near field, together with the containment and isolation provided by the geosphere, contributes to the long-term safety provided by a geological disposal facility (GDF) after closure. The different engineered barriers can prevent or limit the release of radionuclides and their migration to the undisturbed host rock or geosphere and are expected to fulfil their post-closure safety functions for many thousands to hundreds of thousands of years. They will continue to contribute to containment after their eventual degradation when there would no longer be confidence that they would continue to fulfil all of their safety functions in their totality. By that time, significant radioactive decay will have occurred, substantially reducing the hazard associated with the wastes. Therefore, demonstration of long-term safety requires an understanding of the evolution of the engineered barriers and the consequences for the generic safety functions that the different barriers provide. This paper provides an overview of the research of the Nuclear Decommissioning Authority Radioactive Waste Management Directorate into the evolution of the near field of a GDF.


Author(s):  
Alex Bond ◽  
George Towler ◽  
Alan Paulley ◽  
Simon Norris

In June 2008 the UK government published a ‘White Paper’ as part of the “Managing Radioactive Waste Safety” (MRWS) programme to provide a framework for managing higher activity radioactive wastes in the long-term through geological disposal. The White Paper identifies that there are benefits to disposing all of the UK’s higher activity wastes (Low and Intermediate Level Waste (LLW and ILW), High Level Waste (HLW), Spent Fuel (SF), Uranium (U) and Plutonium (Pu)) at the same site, and this is currently the preferred option. It also notes that research will be required to support the detailed design and safety assessment in relation to any potentially detrimental interactions between the different modules. Different disposal system designs and associated Engineered Barrier Systems (EBS) will be required for these different waste types, i.e. ILW/LLW and HLW/SF. If declared as waste U would be disposed as ILW and Pu as HLW/SF. The Geological Disposal Facility (GDF) would therefore comprise two co-located modules (respectively for ILW/LLW and HLW/SF). A study has recently been undertaken by NDA RWMD to identify the key Thermo-Hydro-Mechanical-Chemical (THMC) interactions which might occur during both the operational and post-closure phases in order to assess the potential implications of co-location in a range of host rocks. This paper presents supporting modelling work used to help understand the potential interactions between the modules. A multi-phase flow and coupled gas generation model was used to help investigate the potential groundwater and gas fluxes between the modules, in particular considering the operational phase and resaturation behaviour of the different modules. These early phases are important because gas generation rates and hydraulic gradients will be at their maximum, and the pressure gradients associated with GDF operations will, at least initially, dominate over the background hydraulic gradient. The gas generation and multi-phase flow study considered a mudstone host rock in which gas pressurisation might significantly influence resaturation behaviour, or drive water from one module to the other. The results of the multiphase flow modelling show that although gas generation affects pressure recovery in the ILW/LLW module, the smaller size of the HLW/SF excavations compared with the ILW/LLW excavations, and the operational timings, mean that in general the groundwater pressure gradient in the GDF is from the HLW/SF module (higher pressure) to the ILW module (lower pressure). Transport of solutes from the HLW/SF module towards the ILW module is not expected to result in any deleterious interactions, indicating that hydraulic interactions during the resaturation period are unlikely to pose a fundamental barrier to co-location.


2012 ◽  
Vol 76 (8) ◽  
pp. 3373-3380 ◽  
Author(s):  
S. Vines ◽  
R. Beard

AbstractIn the UK, radioactive wastes currently planned for disposal in a geological disposal facility (GDF) are intermediate-level waste, some low-level waste and high-level waste. Disposal of other materials, including spent fuel, separated uranium and separated plutonium are also included in the planning of a GDF, if such materials are classified as wastes in the future. This paper gives an overview of the radionuclide behaviour research studies of the Nuclear Decommissioning Authority Radioactive Waste Management Directorate (NDA RWMD). The NDA RWMD's current understanding of the processes that control radionuclide behaviour in groundwater and how the engineered and natural barriers in a GDF would contain radionuclides is presented. Areas requiring further work are also identified.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

Sign in / Sign up

Export Citation Format

Share Document